Устройство для получения рентгеновского излучения повышенной яркости
Изобретение относится к средствам для получения рентгеновского излучения, в частности к средствам, предназначенным для использования при исследовании веществ, материалов или приборов. Устройство содержит источник расходящегося рентгеновского излучения и рентгеновскую линзу 1. Последняя установлена и выполнена с возможностью захвата части расходящегося рентгеновского излучения источника и преобразования его в сфокусированное или квазипараллельное. Излучающая зона источника расходящегося рентгеновского излучения смещена относительно входного фокуса 10 рентгеновской линзы таким образом, что эта зона находится в пределах телесного угла 13. Телесный угол 13 образуется продолжениями каналов рентгеновской линзы в сторону источника расходящегося рентгеновского излучения. Технический результат: повышение яркости выходного излучения за счет более эффективного использования первичного излучения реального используемого источника с излучающей зоной, имеющей конечные размеры, превышающие размеры фокусной области рентгеновской линзы в плоскости, нормальной к продольной оси линзы. 8 з.п.ф-лы, 9 ил.
Изобретение относится к средствам для получения рентгеновского излучения, в частности к средствам, предназначенным для использования при исследовании и испытании веществ, материалов или приборов.
Известно использование синхротронов или накопительных колец для получения рентгеновского излучения высокой яркости (см. Синхротронное излучение. Под ред. К.Кунца. Москва, издательство "Мир", 1981, с.80-89 [1]). При этом из весьма широкого спектра синхротронного излучения выделяется необходимая спектральная полоса в рентгеновском диапазоне. Однако источники синхротронного излучения, в том числе накопительные кольца, представляют собой сложнейшие капитальные сооружения, стоимость которых достигает сотен миллионов долларов. Так, накопительные кольца, спектр излучения которых включает рентгеновский диапазон, имеют диаметр не менее 50 м ([1], с.80). Вместе с тем источники синхротронного излучения до недавнего времени являлись практически единственным видом источников, позволяющих получить достаточную для целей исследований и испытаний спектральную плотность узконаправленного рентгеновского излучения в требуемом рабочем диапазоне. Ситуация изменилась с появлением рентгеновских капиллярных линз, использующих явление полного внешнего отражения (В.А. Аркадьев, А.И. Коломийцев, М.А. Кумахов и др. Широкополосная рентгеновская оптика с большой угловой апертурой. Успехи физических наук, 1989, том 157, выпуск 3, с.529-537 [2]), впоследствии получивших известность как линзы Кумахова (см. патент США 5175755, опубл. 29.12.92 [3] и др.). Благодаря фокусирующим свойствам линз Кумахова яркость сравнительно маломощного источника может быть существенно увеличена. Реализующее эту возможность известное устройство (патент США 5570408, опубл. 29.10.96 [4]) содержит источник расходящегося рентгеновского излучения и рентгеновскую линзу в виде совокупности изогнутых каналов с использованием многократного полного внешнего отражения рентгеновского излучения от их стенок. Последняя установлена и выполнена с возможностью захвата части расходящегося рентгеновского излучения источника и преобразования его в квазипараллельное или сфокусированное. Согласно расчетам, приведенным в международной заявке PCT/RU 00/00324 (международная публикация WO 02/12871 от 14.02.2002) [5], с помощью такого устройства может быть достигнута яркость, сопоставимая с яркостью рентгеновского излучения на выходе синхротронного источника. Известное устройство [4] наиболее близко к предлагаемому. Использование в указанном известном устройстве источника расходящегося рентгеновского излучения предполагает совмещение его излучающей зоны (например, фокального пятна мишени рентгеновской трубки) с входным фокусом линзы. При этом возможности линзы по концентрации расходящегося рентгеновского излучения эффективно используются лишь в случае квазиточечного источника, когда размер его излучающей зоны сопоставим с размером входной фокусной области линзы в плоскости, нормальной к продольной оси линзы. Если же размер излучающей зоны превышает указанную величину, часть ее элементов не участвует в формировании выходного излучения устройства, так как излучение этих элементов не захватывается линзой. В известном устройстве не может быть обеспечено, в частности, удовлетворительное сопряжение с рентгеновской линзой источника, имеющего излучающую зону в виде штриха (источник с линейным фокусом). Предлагаемое изобретение направлено на получение технического результата, заключающегося в повышении яркости выходного излучения за счет более эффективного использования первичного излучения реального (не являющегося квазиточечным) используемого источника с излучающей зоной, имеющей конечные размеры, превышающие, в том числе значительно, размеры фокусной области рентгеновской линзы в плоскости, нормальной к продольной оси линзы. Для этого предлагаемое устройство, как и названное выше наиболее близкое к нему [4] , содержит источник расходящегося рентгеновского излучения и рентгеновскую линзу, установленную и выполненную с возможностью захвата части расходящегося рентгеновского излучения источника и преобразования его в квазипараллельное или сфокусированное. В отличие от известного устройства, в предлагаемом устройстве излучающая зона используемого источника смещена относительно фокуса рентгеновской линзы таким образом, что эта зона находится в пределах телесного угла, образуемого продолжениями каналов рентгеновской линзы в сторону используемого источника. Этот телесный угол состоит из двух частей, симметричных относительно входной фокусной области рентгеновской линзы; часть, расположенную между фокусной областью и входным торцом рентгеновской линзы, обычно называют углом захвата. Смещение из фокуса возможно в пределах любой из названный частей указанного телесного угла, т.е. как в сторону приближения к входному торцу линзы, так и в сторону удаления от него. Оптимальным является такое взаимное расположение источника рентгеновского излучения и рентгеновской линзы, при котором излучающая зона источника полностью расположена в пределах указанного телесного угла и своими периферийными точками достигает границ этого угла. В этом случае в формировании выходного излучения устройства участвуют все элементы излучающей зоны используемого источника и вместе с тем в работе рентгеновской линзы принимает участие максимальное количество ее каналов, включая периферийные, наиболее удаленные от продольной оси линзы. В качестве источника расходящегося рентгеновского излучения может быть использована, например, рентгеновская трубка. Последняя может иметь, в частности, линейный фокус. Ориентация линейного фокуса может быть как перпендикулярной, так и наклонной по отношению к продольной оси рентгеновской линзы. Предлагаемое изобретение иллюстрируются чертежами, где на фиг.1 и 2 приведены схематические изображения устройств с рентгеновскими линзами двух типов и рентгеновской трубкой при отсутствии смещения излучающей зоны рентгеновской трубки относительно входного фокуса линзы; фиг. 3 и 4 иллюстрируют работу устройств с двумя типами рентгеновских линз при различных смещениях излучающей зоны рентгеновского источника относительно входного фокуса линзы; фиг.5 и 7 иллюстрируют работу устройств с двумя типами рентгеновских линз при использовании рентгеновской трубки с линейным фокусом; на фиг. 6 показана возможность управления формой поперечного сечения квазипараллельного выходного пучка при использовании рентгеновской трубки с линейным фокусом; на фиг.8 и 9 показано использование рентгеновских линз двух типов в устройстве с наклонным положением линейного фокуса рентгеновской трубки относительно продольной оси линзы. Рентгеновские линзы, используемые как в предлагаемом устройстве, так и в наиболее близком к нему известном устройстве, - линза 1 для фокусирования расходящегося рентгеновского излучения, создаваемого источником 2 и линза 3 для преобразования указанного излучения в квазипараллельное, показаны соответственно на фиг.1 и 2. Обе линзы содержат множество каналов 4 транспортировки рентгеновского излучения с использованием явления многократного полного внешнего отражения. Линза 1 в целом имеет форму бочки, т.е. сужается к обоим торцам - входному (приемному) 5 и выходному 6. Линза 3 имеет форму полубочки и сужается только к входному торцу 5. Поток излучения из выходного торца 6 линзы 1 сходится в окрестности точки 7 пересечения продолжений осевых линий каналов 4 - выходного фокуса линзы. Поток 8 излучения из выходного торца 9 линзы 3 квазипараллелен. Осевые линии продолжений каналов 4 обеих линз 1 и 3, выходящих из их входных торцов 5 в сторону источника 2 рентгеновского излучения, сходятся в точке 10 - входном фокусе линзы. Фокусы 7, 10 расположены на продольной оси 11 линз 1, 3. Для обозначения рентгеновских линз двух названных типов получили распространение соответственно термины "полная линза" и "полулинза". Соответствующая терминология используется и ниже при описании предлагаемого устройства; в тех случаях, когда не имеется в виду какой-либо конкретный из двух названных типов, используются термины "линза" или "рентгеновская линза". Рентгеновские линзы получают по технологии изготовления монолитных линз, в которых (как условно показано на фиг.1 и 2) стенки соседних каналов 4 транспортировки излучения контактируют друг с другом по всей длине, а сами каналы имеют переменное по длине поперечное сечение, изменяющееся по тому же закону, что и полное поперечное сечение линзы (V.M. Andreevsky, M. V. Gubarev, P. I. Zhidkin, M. A. Kumakhov, A.V. Noskin, I. Yu. Ponomarev, Kh. Z. Ustok. X-ray waveguide system with a variable cross-section of the sections. The IV-th All-Union Conference on Interaction of Radiation with Solids. Book of Abstracts (May 15-19, 1990, Elbrus settlement, Kabardino-Balkarian ASSR, USSR, pp. 177-178) [6]. Прогрессивным направлением в технологии изготовления монолитных линз является технология так называемых интегральных линз, обеспечивающая получение линз с каналами, диаметр которых и соответственно размер фокусной области в поперечном направлении может составлять доли микрона (международная заявка PCT/RU 00/00206, международная публикация WO 01/29845 от 26.04.2001 [7]; патент США 6271534, опубл. 07.08.2001 [8]). Поэтому использование в известном устройстве [4] линз последних поколений эффективно только в сочетании с микрофокусными источниками. При больших размерах излучающей зоны источника 2 (такая зона 12 показана на фиг.1 и 2) линза, фокус 10 которой не смещен относительно излучающей зоны, захватывает излучение только части элементов этой зоны, находящихся в пределах фокусной области линзы. Размер этой области в поперечном направлении, как уже отмечалось, имеет порядок поперечного размера d каналов линзы (более точной является оценка d+2f

Формула изобретения
1. Устройство для получения рентгеновского излучения повышенной яркости, содержащее источник расходящегося рентгеновского излучения и рентгеновскую линзу, установленную и выполненную с возможностью захвата части расходящегося рентгеновского излучения источника и преобразования его в квазипараллельное или сфокусированное, отличающееся тем, что излучающая зона источника расходящегося рентгеновского излучения смещена относительно входного фокуса рентгеновской линзы таким образом, что эта зона находится в пределах телесного угла, образуемого продолжениями каналов рентгеновской линзы в сторону источника расходящегося рентгеновского излучения. 2. Устройство по п.1, отличающееся тем, что излучающая зона источника расходящегося рентгеновского излучения смещена относительно входного фокуса рентгеновской линзы в сторону приближения к входному торцу рентгеновской линзы. 3. Устройство по п.1, отличающееся тем, что излучающая зона источника расходящегося рентгеновского излучения смещена относительно входного фокуса рентгеновской линзы в сторону удаления от входного торца рентгеновской линзы. 4. Устройство по любому из пп.1-3, отличающееся тем, что излучающая зона источника расходящегося рентгеновского излучения полностью расположена в пределах телесного угла, образуемого продолжениями каналов рентгеновской линзы в сторону источника расходящегося рентгеновского излучения, и своими периферийными точками достигает границ этого угла. 5. Устройство по любому из пп.1-3, отличающееся тем, что источником расходящегося рентгеновского излучения является рентгеновская трубка. 6. Устройство по п.5, отличающееся тем, что рентгеновская трубка имеет линейный фокус. 7. Устройство по п.6, отличающееся тем, что линейный фокус рентгеновской трубки ориентирован наклонно по отношению к продольной оси рентгеновской линзы. 8. Устройство по любому из пп.1-3, отличающееся тем, что источником расходящегося рентгеновского излучения является лазерный источник. 9. Устройство по любому из пп.1-3, отличающееся тем, что источником расходящегося рентгеновского излучения является плазменный источник.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе
Дата прекращения действия патента: 24.07.2010
Дата публикации: 10.12.2011