Блочный катализатор сотовой структуры селективного окисления аммиака до оксида азота
Изобретение относится к области приготовления блочного неплатиноидного катализатора процесса окисления аммиака в производствах азотной кислоты и гидроксиламина. Описан блочный катализатор сотовой структуры селективного окисления аммиака до оксида азота, включающий оксиды железа, алюминия и промотор. В качестве промотора катализатор содержит по крайней мере одно соединение элемента из группы: Со, Mn, Cr, V, Мо, Sn, Bi или их смесь, а предшественником оксида алюминия является соединение алюминия формулы Аl2О3nH2O, где 0,3
n
1,5, имеющее слоистую рентгеноаморфную структуру. Предшественник оксида алюминия может содержать по крайней мере одно соединение элемента из группы: Si, Mg, Са в количестве не более 1,0 мас.% в пересчете на оксид. Получаемый катализатор имеет следующий состав, мас.%: Fe2О3 65-86, промотор в пересчете на оксид 0,1-15, Al2О3 остальное. Блочный катализатор дополнительно содержит оксид титана в количестве не более 5 мас. % для увеличения его термостабильности. Предлагаемый катализатор обладает высокой механической прочностью, термостабильностью и имеет высокую каталитическую активность. 2 з.п.ф-лы, 1 табл., 2 ил.
Изобретение относится к области приготовления блочного неплатиноидного катализатора процесса окисления аммиака в производствах азотной кислоты и гидроксиламина.
Широко используемым катализатором второй ступени окисления аммиака является железохромовый катализатор КН-2 (Караваев М.М. и др. Каталитическое окисления аммиака. М.: Химия, 1983, с. 155). Данный катализатор является гранулированным и может эффективно работать только при загрузке контактных аппаратов низкого давления. Для контактных аппаратов высокого давления наиболее перспективным является применение блочных катализаторов сотовой структуры. Слой блочного катализатора высотой 25-100 мм обеспечивает необходимые для полного доокисления аммиака времена контакта, низкое сопротивление газовому потоку при его высоких линейных скоростях и своеобразную защиту от разрыва платиноидных сеток в случае аварийных ситуаций. Сложность технологии получения высокоорганизованной геометрии сотовой структуры и жесткие требования к катализатору по устойчивости к высоким температурам эксплуатации, окислительной среде, а также резким перепадам температур до последнего времени сдерживали применение блочного катализатора в контактных аппаратах окисления аммиака. Известен катализатор для окисления аммиака до окислов азота (патент РФ 2106908, МПК6 B 01 J 23/78, С 01 В 21/26, 1998), который включает в качестве основного каталитически активного компонента оксиды неблагородных металлов, нанесенные на носитель монолитной структуры, выполненный из термостойкого материал. Носитель имеет каналы с гидравлическим диаметром 0,8-30,0 мм и объемом пустот 60-85% при содержании каталитически активного компонента 5-60% от массы катализатора. Недостатком катализатора является недостаточно прочное закрепление активного компонента на носителе, что приводит к уменьшению срока службы катализатора. Наиболее близким техническим решением является катализатор окисления аммиака (патент РФ 2117528, МПК6 B 01 J 23/83, 21/04, 1998) на основе альфа-оксида железа и оксида алюминия регулярной сотовой структуры, содержащий дополнительно оксид кремния или оксид кремния и/или оксиды редкоземельных элементов (РЗЭ) и циркония и представляющий собой блоки сотовой структуры. Однако катализатор обладает невысокой активностью, низкими механической прочностью и термостабильностью. Задачей изобретения является разработка и приготовление катализатора с повышенной механической прочностью, термостабильностью, с сохранением высокой каталитической активности и длительного срока его эксплуатации. Поставленная задача решается с помощью блочного катализатора сотовой структуры селективного окисления аммиака до оксида азота, включающего оксиды железа, алюминия и промотор. В качестве промотора катализатор содержит по крайней мере одно соединение элемента из группы: Со, Мn, Сr, V, Мо, Sn, Bi или их смесь в количестве 0,1-15 мас.%. в пересчете на оксид, а предшественником оксида алюминия является соединение алюминия формулы Аl2O3
























Пример 2. Получение железомарганцевого оксидного катализатора. Исходную шихту готовят из оксидов железа и марганца, определяющих каталитическую активность. Компоненты шихты Fе2О3, МnО2 загружали в смеситель в соотношении 80:20. Далее при перемешивании в смесителе к 65 кг шихты добавляли 15 кг пептизированного гидроксида алюминия на основе слоистого рентгеноаморфного соединения алюминия формулы Аl2O3

число теплосмен - 25;
степень конверсии аммиака в NO, % - 84. катализатор имеет следующий состав, мас.%:
Fе2O3 - 65
МnО2 - 8,5
Аl2О3 - Остальное
Пример 3. Получение железохромового оксидного катализатора. Исходную шихту готовят из оксидов железа и хрома. Компоненты шихты Fе2О3, Сr2О3 загружали в смеситель в соотношении 90:10. Далее при перемешивании в смесителе к 65 кг шихты добавляли 15 кг пептизированного гидроксида алюминия на основе слоистого рентгеноаморфного соединения алюминия формулы Аl2O3

число теплосмен - 20;
степень конверсии аммиака в NO, % - 85. Катализатор имеет следующий состав, мас.%:
Fе2O3 - 73
Сr2O3 - 8,0
Аl2O3 - Остальное
Пример 4. Получение железохромового оксидного катализатора. Исходную шихту готовят из отработанного СТК-1 катализатора, содержащего, мас. %: Fе2O3 - 88, Сr2О3 - 8,5, и оксида титана смешением. Отношение СТК-1 катализатор к ТiO2 составляет 16:1. Далее при перемешивании в смесителе к 65 кг шихты добавляли 5 кг пептизированного гидроксида алюминия слоистого рентгеноаморфного соединения алюминия формулы Аl2O3

число теплосмен -

степень конверсии аммиака в NO, % - 81. Катализатор имеет следующий состав, мас.%:
Fе2O3 - 78
Сr2O3 - 4,7
TiO2 - 5,0
Аl2О3 - Oстальное
Примеры 5-6
Аналогичны примеру 1, только отличаются значением n, промоторами и дополнительным содержанием оксидов Si, Ca, Mg, причем соединения Са и Mg введены в Аl2O3

80 г оксида железа, 40 г гидроксида алюминия и 2 г алюмосиликатного волокна смешивают в смесителе с 25 мл воды, 8 мл концентрированной азотной кислоты и 2 мл этиленгликоля в течение 1 ч до образования пластинчатой пасты, которую формуют методом экструзии в виде блоков с толщиной стенки 1 мм. Блоки провяливают, затем поднимают температуру в сушильном шкафу до 110oС и выдерживают до 24 ч. Высушенные блоки прокаливают при 900oС 4 ч. Катализатор выдерживает 5 циклов быстрого нагрева до 700oС и охлаждения до комнатной температуры. Состав катализатора: Fе2О3 85%, Аl2O3 13%, SiО2 2%. Из представленных примеров и таблицы следует, что предлагаемый катализатор обладает высокой механической прочностью, термостабильностью и имеет высокую каталитическую активность.
Формула изобретения



Fe2О3 - 65-86
Промотор, в пересчете на оксид - 0,1-15
Al2О3 - Остальное
2. Блочный катализатор по п. 1, отличающийся тем, что предшественник оксида алюминия дополнительно содержит по крайней мере одно соединение элемента из группы: Si, Mg, Ca в количестве не более 1,0 мас.% в пересчете на оксид. 3. Блочный катализатор по п.1, отличающийся тем, что дополнительно содержит оксид титана в количестве не более 5 мас.%.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3