Способ подавления шума в информационном сигнале и устройство для его осуществления
Изобретение относится к технике электрической связи, в частности к способам и устройствам обработки информационных сигналов. Техническим результатом является эффективное подавление широкополосных, полигармонических шумов, искажающих информационные сигналы, а также усиление контрастности полезного информационного сигнала. Технический результат достигается тем, что применяют метод многоканальной автоматической регулировки усиления. Устройство включает в себя блок полосовой фильтрации сигнала, блок вычисления целевой функции, блок модификации целевой функции, блок умножения и блок объединения частотных компонент, в устройство дополнительно введены: вычислитель амплитуд спектра, блок накопления среднего спектра и вычислитель отношения сигналов. 2 с. и 6 з.п.ф-лы, 13 ил.
Изобретения относятся к технике электрической связи, а более конкретно к способам и устройствам, предназначенным для обработки информационных сигналов с целью подавления квазистационарных широкополосных и тональных помех, искажающих информационные сигналы, в частности аудиосигналы. Заявляемые способ и устройство могут быть использованы в различных системах связи для улучшения качества и кодирования информационного сигнала, в системах распознавания речи для улучшения надежности распознавания слов, в системах верификации (определения) дикторов, реставрации аудиосигналов, в средствах помощи людям с ослабленным слухом.
Известны различные способы и устройства для подавления шума в системах связи (в системах речевой почты, системах сотовой радиотелефонной связи, междугородных системах связи, системах связи на воздушных линиях и т. п.). Все они предназначены для уменьшения уровня фонового шума при кодировании информационного сигнала пользователя. Известен способ подавления шума [1], основанный на вычитании спектров. Он заключается в следующем. Исходный сигнал расфильтровывают на отдельные частотные компоненты (преобразуют из временной области в частотную), после чего каждую частотную составляющую взвешивают (фильтруют) целевой функцией g(t,f). После этого взвешенные частотные составляющие объединяют (преобразуют из частотной области во временную), формируя результирующий сигнал на выходе фильтра. Целевую функцию метода спектрального вычитания (МСВ) g(t,f) вычисляют с использованием вычитания оценки N(t,f)2 среднего спектра мощности шума из мгновенного спектра мощности сигнала X(t,f)2, например, следующим образом:



Ex(t,f)=Re(t,f)-Re



En(t,f)=En(t-l,f)+alf

где alf<1 - константа обновления оценки во времени. На кадрах речевой активности в частотном канале мощность шума в нем не обновляют. Обнаружение участков чистого шума в ВСМШ об обновлении составляет основное содержание технического решения-прототипа. Далее в ИМС вычисляют мощность сигнала:
Es(t,f)=(1-bet)(Ex(t,f)-En(t,f))+bet

где bet<1 - постоянная смешивания;
Ey(t-1,f) - оценка мощности частотной компоненты в предшествующем выходном сигнале с подавленным шумом. В БВЦФ для текущего кадра вычисляют целевую функцию фильтра G(t,f):

Затем в БМЦФ целевую функцию модифицируют, определяя вначале отношение сигнал/шум (SNR):
SNR(t,f)=G(t,f)(Ex(t,f)/En(t,f));
а затем определяют значение модифицированной целевой функции g(t,f):
g(t,f)=F(SNR(t,f))[Ex(t,f)/En(t,f)],
где F - функция одной переменной, подходящая для реализации на цифровом процессоре, например
F(x)=x/(1+x);
далее частотные компоненты умножают в блоке умножения (БУ) на целевую функцию, что означает фильтрацию сигнала в спектральной области:
Y(t,1)=X(t,f)

создание набора частотных компонент входного информационного сигнала;
определение амплитуды каждой частотной компоненты набора частотных компонент;
накопление среднего значения каждой частотной компоненты;
определение целевой функции для каждой частотной компоненты как функции амплитуды в каждой частотной компоненте упомянутого входного сигнала и среднего значения каждой частотной компоненты;
модифицирование целевой функции;
умножение частотных компонент упомянутого входного сигнала на соответствующие значения модифицированной целевой функции;
преобразование выходного информационного сигнала из частотной области во временную. В частности, средние значения для каждой частотной компоненты накапливают на паузе информационного сигнала со второй предустановленной скоростью, большей первой скорости, в присутствии упомянутого информационного сигнала. При этом выявление паузы в информационном сигнале можно осуществлять путем сравнения амплитуды каждой частотной компоненты входного информационного сигнала с первым предустановленным порогом и определять отсутствие паузы при превышении упомянутого первого порога. Целевую функцию для каждой частотной компоненты можно определять как отношение амплитуды соответствующей частотной компоненты входного информационного сигнала к среднему значению каждой частотной компоненты, после чего из него вычитают величину второго предустановленного порога. Целевую функцию можно модифицировать путем первоначального ограничения ее значения предустановленной максимальной величиной и последующего ограничения ее значения предустановленной минимальной величиной. Предустановленную минимальную величину целевой функции можно определять путем накопления суммы средних значений амплитуд частотных компонент, нормировкой амплитуды каждой частотной компоненты упомянутого сигнала на предустановленную константу, последующего определения отношения нормированной амплитуды каждой частотной компоненты к упомянутой сумме, вычитания из полученного отношения второй предустановленной константы и ограничения полученной величины значениями 0 и 1, с последующим умножением предустановленного нижнего порогового значения целевой функции на полученную величину. Поставленная задача решается также тем, что в устройстве для подавления шума в информационном сигнале, включающем блок полосовой фильтрации сигнала (БПФ), блок вычисления целевой функции (БВЦФ), блок модификации целевой функции (БМЦФ), блок умножения (БУ) и блок объединения частотных компонент (БОЧК), в устройство дополнительно введены вычислитель амплитуд спектра (ВАС), блок накопления среднего спектра (БНСС) и вычислитель отношения сигналов (ВОС), при этом выход блока полосовой фильтрации сигнала (БПФ) соединен с первым входом блока умножения (БУ) и входом вычислителя амплитуд спектра (ВАС), выход которого подключен к входу блока накопления среднего спектра (БНСС), к первому входу блока модификации целевой функции (БМЦФ) и к первому входу вычислителя отношения сигналов (ВОС), выход блока накопления среднего спектра (БНСС) соединен с первым входом блока вычисления целевой функции (БВЦФ), с вторым входом блока модификации целевой функции (БМЦФ) и со вторым входом вычислителя отношения сигналов (ВОС), выход которого подключен ко второму входу блока вычисления целевой функции (БВЦФ), выход блока вычисления целевой функции (БВЦФ) соединен с третьим входом блока модификации целевой функции (БМЦФ), выход блока модификации целевой функции (БМЦФ) подключен ко второму входу блока умножения (БУ), выход блока умножения (БУ) соединен с входом блока объединения частотных компонент (БОЧК). Блок накопления среднего спектра (БНСС) может включать блок вычитания (БB1), определитель знака (ОЗ), мультиплексор (М), снабженный первым и вторым элементами памяти (ЭП1 и ЭП2 соответственно), второй блок умножения (БУ2), сумматор (С), сдвиговый регистр (СР), третий блок умножения (БУ3), четвертый блок умножения (БУ4) с третьим элементом памяти (ЭП3), при этом вход блока накопления среднего спектра (БНСС) является первым входом второго блока умножения (БУ2) и первым входом блока вычитания (БB1), выход которого через определитель знака (ОЗ) соединен с входом выбора данных мультиплексора (М), выход которого подключен ко второму входу второго блока умножения (БУ2) и к первому входу третьего блока умножения (БУ3), выход второго блока умножения (БУ2) соединен с первым входом сумматора (С), выход которого подключен к входу сдвигового регистра (СР), выход сдвигового регистра (СР) соединен с входом четвертого блока умножения (БУ4) и вторым входом третьего блока умножения (БУ3), выход которого подключен ко второму входу сумматора (С), а выход четвертого блока умножения (БУ3) соединен с вторым входом блока вычитания (БB1). Блок модификации целевой функции (БМЦФ) может включать линейку сдвиговых регистров (СР), многовходовой сумматор (МС), второй и третий блоки умножения (БУ5 и БУ6 соответственно), снабженные элементами памяти (ЭП1 и ЭП2 - соответственно), блок деления (БД), блок вычитания (БВ) с элементом памяти (ЭП3), блок ограничения пик-фактора (БО ПФ) и блок ограничения целевой функции (БО ЦФ), при этом вход второго блока умножения (БУ5) является первым входом блока модификации целевой функции (БМЦФ), вход линейки сдвиговых регистров (СР) является вторым входом блока модификации целевой функции (БМЦФ), а первый вход блока ограничения целевой функции (БО ЦФ) служит третьим входом блока модификации целевой функции (БМЦФ), выходы упомянутой линейки подключены к входам многовходового сумматора (МС), выход которого соединен с первым входом блока деления (БД), ко второму входу которого подключен выход пятого блока умножения (БУ5), а выход блока деления (БД) соединен с входом блока вычитания (БВ), выход которого подключен к входу шестого блока умножения (БУ6) через блок ограничения пик-фактора (БО ПФ), выход шестого блока умножения (БУ6) которого соединен со вторым входом блока ограничения целевой функции (БО ЦФ), выход которого является выходом блока модификации целевой функции (БМЦФ). Сущность заявляемого метода заключается в замене МСВ многоканальной автоматической регулировкой усиления (АРУ). Приведем краткое обоснование заявляемого способа. Рассмотрим одноканальный вариант АРУ с функцией подавления шума в паузах информационного сигнала. Пусть сигнал x(t), состоящий из информационного сигнала s(t) и шума n(t), имеет среднее абсолютное значение Ps(t), а среднее абсолютное значение шума приблизительно равно Рn. Предположим, что амплитуда информативного сигнала значительно больше амплитуды шума. Тогда сигнал следует ослаблять на интервалах, где информативный сигнал отсутствует. Это можно реализовать с помощью АРУ с коэффициентом усиления (целевой функцией) g(t) следующего вида:

где Gmin - коэффициент, задающий границу средней амплитуды сигнала, ниже которой сигнал(шум) будет подавляться. Текущую среднюю амплитуду сигнала Ps(t) можно определять, например, на основе экспоненциального сглаживания абсолютных амплитуд сигнала
Ps(t) = Ps(t-1)+bet

где bet - постоянная сглаживания, согласованная с динамикой полезного сигнала s(t). Сигнал на выходе АРУ y(t) пропорционален коэффициенту усиления АРУ
y(t)=g(t)x(t). В случае Ps(t)


тогда коэффициент усиления АРУ можно определить следующим образом:

Описанная процедура АРУ подавляет нестационарный шум невысокого уровня в паузах полезного информационного сигнала, но не может быть использована в отсутствии таких пауз, а также в случае малого SNR исходного сигнала. Для преодоления этих ограничений авторами предложена многоканальная фильтрация (АРУ в отдельных частотных каналах). В соответствии с заявляемым способом сигнал разделяют на отдельные частотные диапазоны и осуществляют независимое подавление шума в отдельных частотных полосах с последующим объединением частотных компонент преобразованного сигнала. Заявляемый способ подавления шума в информационном сигнале и устройство для его осуществления поясняются чертежами, где на фиг.1 приведена блок-схема устройства-прототипа;
на фиг.2 показана блок-схема заявляемого устройства;
на фиг. 3 дана схема блока накопления среднего спектра заявляемого устройства;
на фиг. 4 приведена схема блока модификации целевой функции заявляемого устройства;
на фиг.5 показана последовательность преобразований сигнала в заявляемом устройстве;
на фиг.6 дана последовательность операций при оценке среднего спектра;
на фиг. 7 приведена последовательность операций по определению целевой функции;
на фиг.8 дана последовательность операций модификации целевой функции;
на фиг. 9 показана последовательность операций по определению нижнего значения целевой функции;
на фиг. 10 приведено сопоставление эффективности сохранения речевой компоненты при одинаковой глубине подавления шума (20 дБ) в зависимости от SNR исходного сигнала для заявляемого способа и способа-прототипа. Горизонтальная шкала обозначает SNR, дБ: 0(16 дБ), 2(14 дБ)... 16(0 дБ)... 26(-10 дБ). Вертикальная шкала - средняя амплитуда выходного сигнала, дБ: 1 - чистый и зашумленный сигналы; 2 - зашумленный сигнал и сигнал на выходе устройства-прототипа; 3 - зашумленный сигнал и сигнал на выходе предлагаемого устройства;
на фиг.11 показаны результаты обработки того же тестового сигнала заявляемым способом без контрастирования -1 (Gmax=0 дБ) и с контрастированием -2 (Gmах=10 дБ);
на фиг. 12 приведено сопоставление заявляемого способа и способа-прототипа при очистке речи в нестационарном шуме в салоне автомобиля (серый фон - исходный сигнал; светлый фон - сигнал после обработки заявляемым способом; темный фон - сигнал после обработки способом-прототипом);
на фиг.13 дано сопоставление заявляемого способа и способа-прототипа при очистке речи в стационарном шуме, содержащем гармонические компоненты, где: 1 - осциллограммы сигналов (серый фон - исходный сигнал; светлый фон - сигнал после обработки заявляемым способом; темный фон - сигнал после обработки способом-прототипом); 2 - спектры сигналов на шумовом участке, т.е. в отсутствии речевого сигнала (верхний - спектр исходного сигнала, средний - спектр сигнала после обработки способом-прототипом; нижний - после обработки заявляемым способом - гармоники максимально выдавлены). Изображенное на фиг.1 известное устройство 1 для подавления шума в информационном сигнале (см. фиг.1), реализующее отдельные операции заявляемого способа, включает блок полосовой фильтрации сигнала (БПФ) 2, первый измеритель мощности (ИМ1) 3 и второй измеритель мощности (ИМ2) 4, вычислитель спектра мощности шума (ВСМШ) 5, блок вычисления целевой функции (БВЦФ) 6, блок модификации целевой функции (БМЦФ) 7, блок умножения (БУ) 8, измеритель мощности сигнала (ИМС) 9 и блок объединения частотных компонент (БОЧК) 10. Заявляемое устройство 11 для подавления шума в информационном сигнале (см. фиг. 2) включает блок полосовой фильтрации сигнала (БПФ) 2, блок вычисления целевой функции (БВЦФ) 6, блок модификации целевой функции (БМЦФ) 7, блок умножения (БУ) 8 и блок объединения частотных компонент (БОЧК) 10, в устройство дополнительно введены: вычислитель амплитуд спектра (ВАС) 12, блок накопления среднего спектра (БНСС) 13 и вычислитель отношения сигналов (ВОС) 14. Выход блока полосовой фильтрации сигнала (БПФ) 2 соединен с первым входом блока умножения (БУ) 8 и входом вычислителя амплитуд спектра (ВАС) 12, выход которого подключен к входу блока накопления среднего спектра (БНСС) 13, к первому входу блока модификации целевой функции (БМЦФ) 7 и к первому входу вычислителя отношения сигналов (ВОС) 14. Выход блока накопления среднего спектра (БНСС) 13 соединен с первым входом блока вычисления целевой функции (БВЦФ) 6, со вторым входом блока модификации целевой функции (БМЦФ) 7 и со вторым входом вычислителя отношения сигналов (ВОС) 14, выход которого подключен ко второму входу блока вычисления целевой функции (БВЦФ) 6. Выход блока вычисления целевой функции (БВЦФ) 6 соединен с третьим входом блока модификации целевой функции (БМЦФ) 7, выход блока модификации целевой функции (БМЦФ) 7 подключен ко второму входу блока умножения (БУ) 8, выход блока умножения (БУ) 8 соединен с входом блока объединения частотных компонент (БОЧК) 10. Изображенный на фиг.3 блок накопления среднего спектра (БНСС) 13 включает блок вычитания (BB1) 15, определитель знака (ОЗ) 16, мультиплексор (М) 17, снабженный элементом памяти (ЭП1) 18 для запоминания первой предустановленной скорости alf1 усреднения спектра и элементом памяти (ЭП2) 19 для запоминания второй предустановленной скорости alf2 усреднения спектра, второй блок умножения (БУ2) 20, сумматор (С) 21, сдвиговый регистр (СР) 22, третий блок умножения (БУ3) 23, четвертый блок умножения (БУ4) 24 с третьим элементом памяти (ЭП3) 25 для запоминания первого предустановленного порога T1. Вход блока накопления среднего спектра (БНСС) 13 является первым входом первого блока умножения (БУ2) 20 и первым входом блока вычитания (БВ1) 15, выход которого через ограничитель знака (ОЗ) 16 соединен с входом выбора данных мультиплексора (М) 17. Выход мультиплексора (М) 17 подключен к второму входу первого блока умножения (БУ2) 20 и к первому входу второго блока умножения (БУ3) 23. Выход первого блока умножения (БУ2) 20 соединен с первым входом сумматора (С) 21, выход которого подключен к входу сдвигового регистра (СР) 22, выход сдвигового регистра (СР) 22 соединен с входом третьего блока умножения (БУ4) 24 и вторым входом второго блока умножения (БУ3) 23, выход которого подключен ко второму входу сумматора (С) 21. Выход третьего блока умножения (БУ3) 24 соединен со вторым входом блока вычитания (БB1) 15. Показанный на фиг.4 блок модификации целевой функции (БМЦФ) 7 включает линейку 26 сдвиговых регистров (СР) 27 многовходовой сумматор (МС) 28, пятый блок умножения (БУ5) 29, снабженный элементом памяти 30 для запоминания первой предустановленной константы C1, и шестой блок умножения (БУ6) 31, снабженный элементом памяти 32 для запоминания предустановленного нижнего порогового значения целевой функции Gmin, блок деления (БД) 33, блок вычитания (БВ) 34 с элементом памяти 35 для запоминания второй предустановленной константы С2, блок ограничения пик-фактора (БО ПФ) 36 и блок ограничения целевой функции (БО ЦФ) 37. Вход первого блока умножения (БУ2) 29 является первым входом блока модификации целевой функции (БМЦФ) 7, вход линейки 26 сдвиговых регистров (СР) 27 является вторым входом блока модификации целевой функции (БМЦФ) 7, а первый вход блока ограничения целевой функции (БО ЦФ) 37 служит третьим входом блока модификации целевой функции (БМЦФ) 7, выходы упомянутой линейки 26 подключены в входам многовходового сумматора (МС) 28. Выход многовходового сумматора (МС) 28 соединен с первым входом блока деления (БД) 33, к второму входу которого подключен выход первого блока умножения (БУ2) 29, а выход блока деления (БД) 33 соединен с входом блока вычитания (БВ) 34. Выход блока вычитания (БВ) 34 подключен к входу второго блока умножения (БУ3) 31 через блок ограничения пик-фактора (БО ПФ) 36. Выход второго блока умножения (БУ3) 31 соединен с вторым входом блока ограничения целевой функции (БО ЦФ) 37, выход которого является выходом блока модификации целевой функции (БМЦФ) 7. Заявляемый способ подавления шума в информационном сигнале осуществляют с помощью заявляемого устройства следующим образом. Основная идея способа заключается в разделении сигнала на отдельные частотные диапазоны и в независимом подавлении шума в отдельных частотных полосах с последующим объединением частотных компонент преобразованного сигнала. Разделение информационного сигнала на отдельные частотные диапазоны с помощью процедуры покадровой обработки в БПФ 2 (см. фиг.2 и 5). Затем умножают реальные и мнимые компоненты спектра исходного сигнала на частотную весовую функцию фильтра G(t, f) и осуществляют последующий переход обратно во временную область. С этой целью для каждой частотной компоненты X(t,f) в вычислителе амплитудного спектра (ВАС) 12 определяют амплитуды (сглаженные абсолютные значения) A(t,f):
A(t, f) = A(t-1, f)+bet

где bet<1 - константа сглаживания. Константу сглаживания задают в интервале значений 1-0,2, что приводит к несколько различному звучанию профильтрованного сигнала. Далее в блоке накопления среднего спектра (БНСС) 13 обновляют и накапливают средний спектр (см. фиг. 6). Поступившую на вход БНСС 13 частотную компоненту текущего спектра A(t,f) сравнивают с хранящейся в БНСС 13 накопленной (усредненной) компонентой спектра <A(t-l, f)>. Когда поступившая компонента превосходит величину предустановленного первого порога T1 среднего спектра, т.е. когда
А(t,f)>Т1

управляющий сигнал переключает цепь усреднения (обновления) спектра на меньшую первую предустановленную скорость усреднения rate=alf1, в противном случае - на большую вторую предустановленную скорость усреднения rate=alf2. Далее средний спектр обновляют согласно рекуррентному алгоритму
<A(t,f)>=<A(t-1,f)>+rate

R=A(t,f)/<A(t-1,f)>. Отношение R поступает в блок вычисления целевой функции (БВЦФ) 6, где определяют величину целевой функции путем вычитания из отношения R второго предустановленного порога 2 и определяют ограничение максимального значения целевой функции
G(t,f)=MIN[Gmax,R-Т2]. Полученное значение целевой функции поступает на вход блока модификации целевой функции (БМЦФ) 7, где оценку целевой функции модифицируют с учетом предустановленного минимального значения целевой функции Gmin и вычисленного пик-фактора P(f) (см. фиг.8). Пик-фактор определяют в БМЦФ следующими преобразованиями частотных компонент текущего и среднего спектров:
P(f)=MAX{1,MIN[1,C2-C1

где A_fon(f) - сглаженное по частоте значение среднего спектра <A(t,f)>. A_fon(f)=<A(t,f-m)>+...+<A(t,f)>+...<A(t,f+m)>;
gmin(f)=Gmin

g(t,f)=MAX{gmin(f), MIN[Gmax,G(t,f)]}. Далее частотную компоненту спектра умножают в блоке умножения (БУ) 8 на целевую функцию, что означает фильтрацию сигнала в спектральной области
Y(t,f)=X(t,f)

G(t,f)=MIN[Gmax,R-T2],
где Gmax>1 - диапазон усиления компонент спектра сигнала. Контрастирование целесообразно использовать для решения задач текстовой расшифровки сигналов, поскольку оно эффективно усиливает значимые компоненты сигнала, делая его более разборчивым. Оно также может быть использовано в решении задач обнаружения информативного сигнала. Результаты экспериментальной проверки заявляемого способа приведены на фиг.10-13. Заявляемый способ подавления шума в информационном сигнале может быть реализован на базе одного из стандартных процессоров Цифровой Обработки Сигналов (DSP) или с использованием универсальных ЭВМ. Заявляемое устройство не ограничивает возможные варианты реализации заявляемого способа. Онo может быть реализованo и другими устройствами. Например, при вычислении целевой функции может быть использовано спектральное сглаживание спектра. Все эти модификации находятся внутри действия настоящего изобретения. Использованная литература
1. Boll S-F. Suppression of Acoustic Noise in Speech Using Spectral Subraction. - IEEE Trans. ASSP, vol. 27, No 4,1979, pp. 113-120. 2. McAuley et. al. Speech Enhancement Using a Soft-decision Noise Suppression Filter. - IEEE Trans. ASSP, vol.28. No. 2, 1980, pp. 137-145. 3. Патент США 4025721, МПК Н 04 R 27/00, опубликован 24.05.1977. 4. Патент США 4185168, МПК Н 04 R 27/00, опубликован 22.01.1980. 5. Патент РФ 2169992, МПК Н 04 В 15/00, опубликован 04.09.1996. 6. Патент США 6108610, МПК G 01 R 023/00, опубликован 22.08.2000.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13