Способ калибровки калориметрического детектора реакторных излучений
Использование: в калориметрии реакторных излучений. Сущность: в способе радиационное энерговыделение определяют кинетическим методом, фиксируя текущее значение разницы температур чувствительного элемента и оболочки детектора до, в процессе и после изменения мощности реактора между двумя стационарными уровнями по соотношению, в котором доли теплопередачи теплопроводностью и излучением в газовом зазоре между чувствительным элементом и оболочкой детектора учитывают подбором постоянного коэффициента в процессе обработки массива данных таким образом, что текущие значения энерговыделения достигают установившегося и далее не меняются монотонно, а лишь в пределах случайных колебаний нейтронной мощности реактора. Калибровочный коэффициент определяют как отношение энерговыделения к разнице температур чувствительного элемента и одной из оболочек. Технический результат: проведение калибровки калориметрического детектора в рабочих условиях и при рабочих температурах в любом диапазоне значений радиационного энерговыделения. 1 з. п. ф-лы, 4 ил.
Изобретение относится к измерительной технике, а именно к калориметрии реакторных излучений и к способам калибровки калориметрических детекторов реакторных излучений.
Калориметрические детекторы реакторных излучений, как правило, состоят из чувствительного элемента, в котором при поглощении реакторных излучений выделяется тепло, одной или нескольких окружающих чувствительный элемент оболочек и снабжены контактными датчиками, например термопарами, для измерения температур чувствительного элемента и оболочки детектора и определения по этим температурам мощности поглощенной дозы реакторных излучений (радиационное энерговыделение) одним из известных методов реакторной калориметрии ([1] - Коляда В. М., Карасев В.С. Калориметрия излучений ядерного реактора. - М.: Атомиздат, 1974. [2] - Мительман М.Г., Дубовский Б.Г., Любченко В. Ф., Розенблюм Н.Д. Детекторы для внутриреакторных измерений энерговыделения. - М.: Атомиздат, 1977, с.71). Для исключения систематической составляющей погрешности определения радиационного энерговыделения применяют калибровку детектора. Известны следующие способы калибровки: 1. Калибровка с помощью гамма-установки ([1] - с. 110). В этом способе детектор устанавливают в поле гамма-излучения известной интенсивности Q и по показаниям детектора U, пропорциональным разнице температур между сердечником и оболочкой детектора, определяют калибровочный коэффициент k=Q/U. Недостатки этого способа заключаются в том, что калибровку проводят вне реакторных условий и поэтому по ней нельзя определить стабильность работы детектора и оценить неизменность калибровочного коэффициента, а также в том, что на гамма-установке невозможна имитация спектра и составляющих реакторных излучений, поглощаемых в чувствительном элементе и приводящих к его нагреву, вследствие чего в определенном этим способом калибровочном коэффициенте содержится систематическая составляющая погрешности. И, наконец, для теплопроводящих калориметров калибровочный коэффициент должен быть определен в диапазоне рабочих температур, что также невозможно воспроизвести на гамма-установке. Как правило, в качестве источника излучения в подобных установках применяют радионуклид 60Со. 2. Калибровка при плавлении (затвердевании) твердого тела с известной скрытой теплотой фазового перехода ([1] - с.111). В этом способе чувствительный элемент детектора выполняют из материала с известной скрытой теплотой фазового перехода. При достижении в калориметре температуры, равной температуре плавления (затвердевания) материала, фиксируют длительность изотермической ступеньки при неизменных показаниях детектора U, пропорциональных разнице температур между сердечником и оболочкой детектора, а по суммарному выделенному или поглощенному теплу, равному произведению массы материала на удельную теплоту фазового перехода, и по времени плавления (затвердевания) определяют радиационное энерговыделение Р. Калибровочный коэффициент определяют как отношение P/U. Недостаток этого способа заключаются в том, что он может быть использован лишь в изотермических калориметрах и в очень узком диапазоне энерговыделений, поскольку при малых энерговыделениях рабочее тело не расплавится, а при больших - расплавится слишком быстро. Кроме того, так как изотермические калориметры нетеплоизолированы, требуется точный учет тепловых потерь, что представляет собой особую проблему ([1] - с. 111, 112). 3. Наиболее широкое применение нашел способ калибровки калориметра с помощью встроенного в него электронагревателя ([1] - с. 98, 101, 103, 109, 111, 113). Способ заключается в том, что на электронагреватель калориметрического детектора с чувствительным элементом, помещенным в одну или несколько оболочек, подают напряжение и измеряют его мощность. По мощности электронагревателя W, определяющей энерговыделение в калориметре, и показаниям детектора U, пропорциональным разнице температур между сердечником и оболочкой детектора, определяют калибровочный коэффициент k=W/U. Достоинством этого способа по сравнению с предыдущим является возможность проведения калибровки в рабочих условиях и в рабочем диапазоне значений энерговыделения. Недостатки этого способа обусловлены необходимостью размещения в миниатюрном детекторе еще более миниатюрного электронагревателя с надежной, термо- и радиационностойкой изоляцией, обеспечивающего надежную регистрацию выделенной электрической мощности W. Детектор с электронагревателем сложен в изготовлении и ненадежен в условиях дистанционных измерений и в отсутствие возможности его ремонта, что характерно для реакторных измерений. С целью устранения недостатков известного способа калибровки калориметрического детектора реакторных излучений с чувствительным элементом, помещенным в одну или несколько оболочек, и снабженным контактными датчиками для измерения температур чувствительного элемента и одной из оболочек детектора, заключающегося в определении калибровочного коэффициента как отношения энерговыделения к разнице температур чувствительного элемента и одной из оболочек детектора, авторы предлагают измерять температуру чувствительного элемента и оболочки детектора до, в процессе и после изменения мощности реактора между двумя стационарными уровнями, фиксировать значения нейтронной мощности реактора на начальном стационарном уровне и в процессе ее изменения, определять радиационное энерговыделение по соотношению








Тс(0) - температура сердечника в момент времени до изменения мощности реактора (начало отсчета времени измерения);
Тоб(0) - температура оболочки в момент времени до изменения мощности реактора;




Тс(


Ср - теплоемкость материала сердечника;
Z(


А и Б - эмпирические коэффициенты;
К - коэффициент, учитывающий вклад механизмов теплопроводности и излучения в перенос тепла в газовом зазоре между чувствительным элементом и оболочкой детектора;
n'(t-

n(0) - значение нейтронной мощности реактора на начальном стационарном уровне мощности (значения n могут быть выражены в единицах шкалы прибора, регистрирующего изменение нейтронной мощности реактора, например ионизационной камеры), а калибровочный коэффициент k определяют как k=Q(0)/





Формула изобретения

где Q(0) - радиационное энерговыделение;
t - время измерения (интегрирования);


Тс(

Тоб(





Тс(0) - температура сердечника в момент времени до изменения мощности реактора (начало отсчета времени измерения);
Тоб(0) - температура оболочки в момент времени до изменения мощности реактора;




Тс(


Ср - теплоемкость материала сердечника;
Z(


А и Б - эмпирические коэффициенты;
К - коэффициент, учитывающий вклад механизмов теплопроводности и излучения в перенос тепла в газовом зазоре между чувствительным элементом и оболочкой детектора;
n'(t-

n(0) - значение нейтронной мощности реактора на начальном стационарном уровне мощности (значения n могут быть выражены в единицах шкалы прибора, регистрирующего изменение нейтронной мощности реактора, например, ионизационной камеры), а калибровочный коэффициент k определяют как k=Q(0)/

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4