Композиция для иммобилизации биологических макромолекул в гидрогелях, способ приготовления композиции, биочип, способ проведения пцр на биочипе
Изобретение относится к композициям (К) для полимеризационной иммобилизации биологических макромолекул в гидрогелях при формировании биочипов К= аА+bВ+сС+dD+еE, включающим А - мономер на основе производных акриловой и метакриловой кислот; В - водорастворимый сшивающий агент; С - модифицированную биологическую макромолекулу, содержащую ненасыщенную группу, D - водорастворимое соединение как компонент среды проведения сополимеризации; Е - воду, где а, b, с, d, е - процентное содержание (Х) каждого компонента в композиции (Х= m/v100% для твердых веществ и Х=v/v
100% для жидких веществ), в которой общее содержание мономера и сшивающего агента лежит в интервале 3-40% (3
(а+b)
(40), соотношение мономера и сшивающего агента находится в пределах 97: 3-60:40, а процентное содержание компонентов С, D и Е находится в пределах 0,0001%
с
10%; 0%
d
90%; 5%
е
95%, способу их приготовления, к модифицированным биологически значимым соединениям ДНК и белкам, биочипу, в котором сформированный на подложке слой ила разделен пустыми промежутками на несколько ячеек, причем каждая из ячеек может содержать либо не содержать иммобилизованные макромолекулы, а макромолекулы, иммобилизованные в разных ячейках, могут различаться по своей природе и свойствам, и двум способам проведения полимеризационно-цепной реакции на биочипе. 11 с. и 23 з.п.ф-лы, 8 ил., 2 табл.
Изобретение относится к области молекулярной биологии и биоорганической химии и касается композиций для иммобилизации олигонуклеотидов, белков, нуклеиновых кислот или любых других биологически значимых молекул в гидрогеле при изготовлении биочипов методом фотоиндуцируемой сополимеризации. Изобретение также относится к технологии изготовления биочипов, находящих применение в молекулярной биологии при секвенировании и картировании ДНК, детектировании мутаций и целого ряда медицинских приложений.
Уровень техники Известны композиции для иммобилизации олигонуклеотидов и белков в полиакриламидном геле при изготовлении биочипов методом сополимеризации [1, 2]. [1] F.N. Rehman, M. Audeh, E.S. Abrams, P.W. Hammond, M. Kenney and Т.С. Boles, Nucleic Acids Research, 1999, v. 27, 15, p. 649-655. [2] А.V. Vasiliskov, E.N. Timofeev, S.A. Surzhikov, A.L. Drobyshev, V.V. Shick and A.D. Mirzabekov, BioTechniques, 1999, v. 27, p. 592-606. В состав композиций, используемых для изготовления указанных биочипов, входят следующие компоненты: - мономеры, составляющие основу формируемого геля; - модифицированные олигонуклеотиды и белки, несущие непредельные группы; - среда проведения фотоиндуцируемой полимеризации. Известно, что в качестве гелеобразующего компонента используют акриламид, а в качестве сшивающего агента - N,N'-метиленбисакриламид с общим содержанием 10% [1] и 5% [2] и соотношением акриламид: N,N'-метиленбисакриламид, равным 29:1 (С=3,3%) [1] и 19:1 (С=5%) [2]. Известно, что модифицированные олигонуклеотиды и белки несут метакриламидную [1], акриламидную [2] и аллильную [2] группы, обеспечивающие их способность сополимеризоваться с гелеобразующими мономерами. Известно, что для формирования гидрогеля используют водно-глицериновые растворы с соотношениями вода : глицерин, равными 25:75 [1] и 60:40 [2]. Известны биочипы, в которых макромолекулы, играющие роль молекулярных зондов, иммобилизованы в ячейках гидрогеля, закрепленных на общей подложке и образующих регулярную структуру (матрицу) [1-5]. [3] Khrapko et al., US Patent 5552270; [4] Ershov et al., US Patent 5770721; [5] Guschin et al. , Manual manufacturing of Oligonucleotide, DNA and Protein Microchips, Analytical Biochemistry, 1997, v. 250, No. 2, p. 203-211 Известны способы изготовления биочипов на основе гидрогелей, в которых технологический цикл состоит из этапов: (1) подготовки подложки, (2) формирования на ней матрицы ячеек геля, (3) нанесения на ячейки растворов биологических макромолекул в соответствии с заранее составленной схемой биочипа, (4) химической обработки ячеек с целью иммобилизации молекул-зондов, (5) отмывки и просушки полученных биочипов. Для формирования матрицы ячеек геля известен метод лазерной абляции расположенного под сплошным слоем геля специального светопоглощающего слоя с геометрией, дополнительной по отношению к заданной геометрии массива ячеек [4], а также метод фотополимеризации через маску [5]. Известны также способы приготовления биочипов на основе геля, в котором стадии формирования массива ячеек и иммобилизации молекул-зондов объединены в одну за счет использования техники фото- или химически индуцируемой сополимеризации [1, 2]. Суть их состоит в использовании композиций, в состав которых наряду с мономером и сшивающим агентом входят иммобилизуемые макромолекулы, снабженные непредельной группой, обеспечивающей встраивание этих молекул в полимерную сетку гидрогеля. Известен способ приготовления биочипов [1], согласно которому ячейки биочипа получают полимеризацией композиций в каплях, нанесенных на подложку с помощью микропипетки. Известен способ приготовления биочипа [2], согласно которому используют специальную тонкослойную (
К=аА+bВ+сС+dD+еЕ,
включающая
А - мономер, составляющий основу формируемого геля, представляющий собой производное непредельной карбоновой кислоты;
В - сшивающий агент, представляющий собой водорастворимое производное непредельной карбоновой кислоты;
С - модифицированное биологически значимое соединение, содержащее непредельную группу акриламидного типа, обладающую высоким сродством к мономеру и сшивающему агенту, что позволяет проводить их эффективную сополимеризацию;
D - компоненты среды проведения фотоиндуцируемой полимеризации;
Е - воду,
где a, b, c, d, e - процентное содержание (X) каждого компонента в композиции (X=m/v


включающая
мономер (А), составляющий основу формируемого геля, представляющий собой производное непредельной карбоновой кислоты;
сшивающий агент (В), представляющий собой водорастворимое производное непредельной карбоновой кислоты;
модифицированное биологически значимое соединение (С), содержащее непредельную группу акриламидного типа, обладающую высоким сродством к мономеру и сшивающему агенту, что позволяет проводить их эффективную сополимеризацию;
водную среду для проведения фотоиндуцируемой полимеризации (компоненты D и Е),
причем
в качестве мономеров (А) используют акриламид, метакриламид, N-[тpиc(гидpoкcимeтил)мeтил]aкpилaмид, 2-гидроксиэтилметакрилат по отдельности или в смеси;
в качестве сшивающего агента (В) используют N,N'-метиленбисакриламид, N, N'-этиленбисметакриламид, N,N'-(1,2-дигидроксиэтилен)бисакриламид, полиэтиленгликольдиакрилат по отдельности или в смеси;
общее содержание мономера и сшивающего агента в исходном составе композиции (а+b) лежит в интервале от 3 до 40%, а соотношение мономера и сшивающего агента (а/b) находится в пределах 97:3-60:40 (3<[b/(a+b)]<40%);
в качестве иммобилизуемого модифицированного биологически значимого соединения (С) с содержанием (с) от 0,0001 до 10% используют
или производные олигонуклеотидов общей формулы I

где ОЛИГО - олигонуклеотид;
R1, R2, R3 - Н, алкил C1-C6, Ph, РhСН2-;
Z - (СН2)nСН(СН2OН)СН2OХ, где n=1-6; или (СН2)п-ОХ, где n=2-6;
Х - фосфодиэфирная группа, связывающая непредельный фрагмент с 5'- и/или 3'-концом олигонуклеотида;
R4 - Н, (СН2)nОН, где n=2-6;
Y - (p-С6Н4)n, где n=0-2;
или новые производные ДНК общей формулы II
5'-X-O-ДНК-3'-O-Z (II),
где ДНК - фрагмент ДНК,
Х - Н или Н2РО3, Z - -CO-Y-CR1=CR2R3
или
Х - -CO-Y-CR1=CR2R3, Z - Н или Н2РО3,
R1, R2, R3 - Н, алкил C1-С6, Ph, PhCH2-;
Y - (р-С6H4)п, где n=0-2,
или общей формулы III

где ДНК - фрагмент ДНК;
R1, R2, R3 - Н, алкил C1-С6, Ph, PhCH2-;
Y - (р-С6Н4)n, где n=0-2,
или общей формулы IV

где ДНК - фрагмент ДНК;
R1, R2, R3 - Н, алкил C1-С6, Ph, РhСН2-;
Y - (р-С6Н4)n, где n=0-2;
R4 - Н, (СН2)nОН, где n=2-6;
Z - -(СН2)nСН(СН2OН)СН2OХ, где n=1-6, или -(СH2)nОХ, где n=2-6;
Х - фосфодиэфирная группа, связывающая непредельный фрагмент с 5'- и/или 3'-концом фрагмента ДНК,
или новые производные белка общей формулы V

где R1, R2, R3 - Н, алкил C1-С6, Ph, PhCH2-;
X - NH, О, CH2, S;
Y - (р-С6Н4)n, где n=0-2;
R - (CH2)n, (СН2СН2O)n, n=1-20,
или общей формулы VI

где R1, R2, R3 - Н, алкил C1-С6, Ph, РhСН2-;
Y - (р-С6Н4)n, где n=0-2;
X - NH, O, S, CH2;
R - (CH2)n, (CH2CH2O)n, n=1-20;
W - NH, O, CH2;
F - (CH2)n, n=1, 2;
Z - NH, S,
или общей формулы VII

где R - (CH2)n, (CH2CH2O)n, n=1-20,
в качестве компонентов (D) водной среды проведения фотоиндуиируемой полимеризации используют N,N-диметилформамид и диметилсульфоксид как водорастворимые высококипящие органические соединения или глицерин, сахарозу и поливиниловый спирт как водорастворимые полигидроксильные соединения с содержанием вышеуказанных компонентов от 0 до 90%. Изобретением предлагается носитель на основе пористого стекла (CPG) следующего строения:

где R1, R2 - Н, алкил C1-С6, Ph, РhСН2-;
R3 - алкил C1-С6;
Y - (p-С6Н4)n, где n=0-2,
способ получения указанного носителя путем ацилирования аминированного пористого стекла
и способ получения модифицированных синтетических олигонуклеотидов формулы I путем введения остатка непредельной кислоты по 3'-концу олигонуклеотида в условиях автоматического твердофазного синтеза с использованием предлагаемого данным изобретением носителя. Изобретением предлагаются способы получения модифицированных фрагментов ДНК
общей формулы II путем ацилирования фрагментов ДНК ангидридами непредельных кислот;
общей формулы III путем восстановительного аминирования апуринизованной ДНК с последующим ацилированием аминопроизводного активированными эфирами непредельных кислот;
общей формулы IV путем использования в ПЦР-амплификации синтетического праймера, несущего на 5'- или 3'-конце непредельную группу. Изобретением предлагаются способы получения модифицированных белков общей формулы V путем ацилирования свободных аминогрупп белка активированными эфирами непредельных кислот следующего строения:

где R1, R2, R3 - Н, алкил C1-С6, Ph, PhCH2-;
Y - (p-С6Н4)n, где n=0-2;
Z - NH, O, CH2, S;
R - (CH2)n, (CH2CH2O)n, где n=1-20;
Х - сукцинимидоокси-, n-нитрофенокси-, пентафторфенокси- или любая другая акцепторная хорошая уходящая группа;
общей формулы VI путем алкилирования сульфгидрильной или аминогруппы белка производными




где R1, R2, R3 - Н, алкил C1-С6, Ph, PhCH2-;
Y - (p-С6Н4)n, где n=0-2;
Z - NH, O, S, CH2;
R - (CH2)n, (CH2CH2O)n, где n=1-20;
W - NH, O, CH2;
Z - галогенометил, винил или любой другой фрагмент, содержащий активную кратную связь,
общей формулы VII путем обработки рекомбинантного белка, содержащего концевой His-6 участок, метакриламидными производными нитрилотриуксусной кислоты общей формулы
CH2=C(Me)-CO-NH-R-CH(COOH)-
N(CH2COOH)2,
где R - (CH2)n, (CH2CH2O)n, n=1-20,
в присутствии солей Ni(II). Изобретение предлагает биочип, включающий подложку, предварительно обработанную кремнийорганическим соединением для ковалентного связывания элементов биочипа с поверхностью, и дискретные гелевые элементы, образующиеся в результате фотоиндуцируемой сополимеризации компонентов композиции, предложенной данным изобретением, причем в качестве кремнийорганического соединения используют 3-триметоксисилилпропилметакрилат, N-(3-триметоксисилилпропил)метакриламид, N-(3-тpимeтoкcиcилилпpoпил)aкpилaмид, 3-глицидилoкcипpoпилтpимeтoкcиcилaн. Изобретение также предлагает способ изготовления биочипа, заключающийся в том, что предлагаемую данным изобретением композицию наносят в виде микрокапель на подложку, обработанную вышеуказанным кремнийорганическим соединением, выдерживают и полимеризуют в бескислородной инертной атмосфере под действием УФ-излучения (


- инкубации биочипа при постоянной температуре с гибридизационным раствором, содержащим исследуемые образцы нуклеиновых кислот, для их гибридизации с иммобилизованными праймерами,
- инкубации биочипа, содержащего гибридизованные с иммобилизованными праймерами нуклеиновые кислоты, с амплификационным раствором, содержащим прямой (F) и обратный (R) праймеры, при постоянной температуре,
- замены амплификационного раствора вне гелевых элементов биочипа гидрофобной жидкостью (минеральным маслом), которая полностью изолирует ячейки чипа друг от друга, и
- инкубации биочипа в условиях циклических изменений температуры, обеспечивающих осуществление ПЦР-амплификации. Раскрытие сущности изобретения
Изготовление биочипов с использованием метода фотоиндуцируемой полимеризации на основе предлагаемых композиций включает следующие этапы:
- подготовку композиций и подложек для изготовления микрочипа;
- нанесение микрокапель композиций на подложку;
- выдерживание нанесенных на подложку микрокапель композиции в атмосфере инертного газа;
- полимеризацию в атмосфере инертного газа под действием УФ-излучения;
- отмывку полученного биочипа. При подготовке композиций для изготовления биочипа все компоненты тщательно смешивают до образования гомогенного раствора, переносят в микротитровальные планшеты для использования далее в качестве источника растворов при нанесении на подложку (подложки) с помощью автоматического устройства (робота), снабженного одним или несколькими микродиспенсерами. В зависимости от содержания полигидроксильного (или высококипящего) водорастворимого компонента D получают композиции различной вязкости, позволяющие варьировать размер гелевых элементов биочипа при фиксированном диаметре пина робота. Кроме того, соотношение компонентов D композиции может оказывать влияние на сохранение активности иммобилизуемого биологически значимого соединения. Приготовленные композиции хранятся при -21oС не менее 1 года. В качестве подложек могут быть использованы стандартные препаратные стекла, а также подложки иных типов, например кварцевые, из оксидированного кремния и т.д. Подготовка стекла для нанесения композиции для полимеризации включает стадию очистки последовательной обработкой концентрированной щелочью, кислотой и стадию химической модификации с помощью растворов одного из нижеперечисленных кремнийорганических соединений (3-триметоксисилилпропилметакрилата, 3-триметоксисилилпропилметакриламида, 3-триметоксисилилпропилакриламида, 3-глицидилоксипропилтриметоксисилана) в органических растворителях. Модификация поверхности стекла кремнийорганическими соединениями позволяет получать биочипы, которые можно использовать в интервале рН от 2 до 12 и интервале температур от -10 до +100oС. Формирование структуры массива ячеек биочипа осуществляют путем нанесения на подготовленную подложку регулярного массива микрокапель полимеризационной композиции. При этом в общем случае каждая микрокапля содержит макромолекулы одного типа. В зависимости от вязкости и других свойств полимеризационных композиций, а также от желаемого размера ячеек биочипа для нанесения используют роботы с микродиспенсерами разных типов. В частности, в случае вязких растворов с содержанием глицерина свыше 40% для этих целей используют робот, снабженный микродиспенсерами стержневого (игольчатого) типа. В зависимости от диаметра стержня диспенсера получают капли (и, следовательно, гелевые ячейки) разного размера. Затем подложки с нанесенными микрокаллями композиций помещают в герметичный контейнер на срок не менее 2 ч, который затем насыщают осушенным инертным газом (азотом, аргоном, углекислым газом). Инициирование процесса полимеризации осуществляют УФ-облучением с


1. Изготовление биочипов (пример 1). I. Приготовление композиции для гелевых биочипов. II. Нанесение композиции на подложку и полимеризация. 2. Синтез носителя метакриламидо-CPG (пример 2). 3. Получение ДНК общей формулы II- IV (примеры 3-5). 4. Получение белка общей формулы V-VII (примеры 6-9). 5. Проведение ПЦР на биочипе (пример 10). Пример 1. Изготовление биочипов. I. Приготовление композиции для гелевых биочипов. Для приготовления биочипов используют различные по составу композиции в зависимости от целей эксперимента (таблица 1). В качестве примера приведено приготовление одной из них. К раствору метакриламида (А) и N,N'-метиленбисакриламида (В) в 0,2 М фосфатном буфере, содержащем 0.15 М NaCl (PBS), рН 7,2 (1.25 мкл, содержание компонентов А и В (а+b)=40% (m/v), соотношение а:b=19:1), прибавляют раствор модифицированного олигонуклеотида или фрагмента ДНК (1-200 пмоль/мкл в PBS, рН 7.2) или модифицированного белка (0.1-10 мг/мл в PBS, рН 7.2) и глицерин (6.45 мкл). Смесь тщательно перемешивают и переносят в микротитровальные планшеты. II. Нанесение композиции на подложку и полимеризация. Предметные стекла (Corning 2947 Micro Slides, Corning Glass Works, Corning, NY), используемые для изготовления биочипов, обрабатывают последовательно раствором щелочи, водой, серной кислотой, водой, высушивают, обрабатывают 3-триметоксисилилпропилметакрилатом (Bind Silane), затем отмывают от избытка реагента этанолом, водой и высушивают на воздухе. Композицию наносят с помощью шприца или пина робота Affymetrix 417 Arrayer (Affymetrix, Santa Clara, CA) (фиг.1). Полученный массив капель полимеризуют под действием ультрафиолетового света (

К раствору 2-гидроксиэтилметакрилата (1.070 г, 8.22 ммоль) и триэтиламина (0.832 г, 8.22 ммоль) в тетрагидрофуране (25 мл) добавляют при интенсивном перемешивании акрилоилхлорид (0.744 г, 8.22 ммоль). Смесь перемешивают при комнатной температуре 1 ч, выпавший осадок отфильтровывают и фильтрат концентрируют. К полученному остатку (масло) приливают воду (30 мл) и интенсивно встряхивают. Водный слой отделяют, приливают этилацетат (15 мл), органический слой высушивают сульфатом натрия и растворитель упаривают в вакууме. Выход 81%, масло. 1Н ЯМР (DMSO-d6),


Фрагментированную (200-300 нуклеотидов) денатурированную геномную ДНК М. tuberculosis исходно используют для гибридизации с соответствующими олигонуклеотидами на биочипе, описанном выше. Затем, после отмывки ДНК, не вступившей в гибридизацию, биочип инкубируют со стандартным ПЦР-раствором (см. выше) в течение 30 мин при 55oС. Водный раствор вне гелевых элементов замещают минеральным маслом и проводят ПЦР (30 циклов): 40 сек - 72oС, 40 сек - 95oС, 60 сек - 64oС. Вслед за завершающей стадией элонгации (10 мин - 72oС) биочип тщательно отмывают сначала хлороформом, затем раствором 0.1-0.3 М NaCl при 80oС и затем анализируют под флуоресцентным микроскопом. На фиг.8 показан результат такого эксперимента. Можно видеть, что аллелеспецифическая ПЦР идет и в этом случае достаточно эффективно в ячейках с праймером, полностью комплементарным используемой ДНК (дикого типа, wt, см. ячейки с С4 праймером). Заметно слабее эта реакция прошла в ячейках с праймером, содержащим однонуклеотидную замену на 3'-конце (mut, C5 праймер).
Формула изобретения
К=аА+bВ+сС+dD+еE,
включающая А - мономер на основе производных акриловой и метакриловой кислот;
В - водорастворимый сшивающий агент;
С - модифицированная биологическая макромолекула, содержащая ненасыщенную группу;
D - водорастворимое соединение как компонент среды проведения сополимеризации;
Е - воду,
где a, b, c, d, e - процентное содержание (X) каждого компонента в композиции (X=m/v


в которой общее содержание мономера и сшивающего агента лежит в интервале 3-40% (3








где ОЛИГО - олигонуклеотид;
R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-;
Z=(СН2)nСН(СН2ОН)СН2ОХ, где n=1-6; или (СН2)n-ОХ, где n=2-6;
Х = фосфодиэфирная группа, связывающая непредельный фрагмент с 5'- и/или 3'-концом олигонуклеотида;
R4=Н, (СН2)nОН, где n=2-6;
Y=(р-С6Н4)n, где n=0-2. 7. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной биологической макромолекулы (С) используют ДНК общей формулы II
5'-X-O-ДНК-3'-O-Z II
где ДНК = фрагмент ДНК;
Х= Н или Н2РО3, Z=-СО-Y-СR1=СR2R3 или Х=-СО-Y-СR1=СR2R3, Z=Н или Н2РО3, R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-; Y=(р-С6Н4)n, где n=0-2. 8. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной макромолекулы (С) используют ДНК общей формулы III

где ДНК = фрагмент ДНК;
R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-;
Y=(р-С6Н4)n, где n=0-2. 9. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной макромолекулы (С) используют ДНК общей формулы IV

где ДНК = фрагмент ДНК;
R1, R2, R3-Н, алкил С1-С6, Ph, PhCН2-;
Y=(р-С6Н4)n, где n=0-2;
R4=Н, (СН2)nОН, где n=2-6;
Z=-(СН2)nСН(СН2ОН)СН2ОХ, где n=1-6, или -(СН2)nОХ, где n=2-6;
Х - фосфодиэфирная группа, связывающая непредельный фрагмент с 5'- и/или 3'-концом фрагмента ДНК. 10. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной биологической макромолекулы (С) используют белок общей формулы V

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-;
Х=NH, О, СН2, S;
Y=(р-С6Н4)n, где n=0-2;
R=(СН2)n, (СН2СН2О)n, где n=1-20. 11. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной биологической макромолекулы (С) используют белок общей формулы VI

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-;
Y=(р-С6Н4)n, где n=0-2;
Х=NH, О, S, СН2;
R=(СН2)n, (СН2СН2О)n, где n=1-20;
W=NH, О, СН2;
F=(СН2)n, где n=1, 2;
Z=NH, S. 12. Композиция по п.1, в которой в качестве иммобилизуемой модифицированной биологической макромолекулы (С) используют белок общей формулы VII

где R=(СН2)n, (СН2СН2О)n, n=1-20. 13. Композиция по п.1, где в качестве компонента среды проведения сополимеризации (Д) используют водорастворимое высококипящее органическое соединение. 14. Композиция по п.13, где в качестве водорастворимого высококипящего органического соединения используют N,N-диметилформамид и диметилсульфоксид. 15. Композиция по п.1, отличающаяся тем, что в качестве компонентов среды проведения фотоиндуцируемой полимеризации используют водорастворимое полигидроксильное соединение. 16. Композиция по п.15, отличающаяся тем, что в качестве водорастворимого полигидроксильного соединения используют глицерин, сахарозу и поливиниловый спирт. 17. Способ приготовления композиции (К) по п.1 для иммобилизации биологических макромолекул в гидрогелях методом сополимеризации в смеси следующего состава:
К=аА+bВ+сС+dD+еE,
включающая А - мономер на основе производных акриловой и метакриловой кислот;
В - водорастворимый сшивающий агент;
С - модифицированная биологическая макромолекула, содержащая ненасыщенную группу;
D - водорастворимое соединение как компонент среды проведения сополимеризации;
Е - воду,
где a, b, c, d, e - процентное содержание (X) каждого компонента в композиции (X=m/v


в которой общее содержание мономера и сшивающего агента лежит в интервале 3-40% (3








5'-X-O-ДНК-3'-O-Z, II
где ДНК = фрагмент ДНК;
Х= Н или Н2РО3, Z=-СО-Y-СR1=СR2R3, где R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-; или Х=-СО-Y-СR1=СR2R3, Z=Н или Н2РО3, где R1, R2, R3=Н, алкил С1-С6, Ph, PhCН2-;
Y=(р-С6Н4)n, где n=0-2,
получаемые путем прямого ацилирования фрагментов ДНК ангидридами непредельных кислот,
или

где ДНК = фрагмент ДНК;
R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Y=(р-С6Н4)n, где n=0-2,
получаемые путем восстановительного аминирования апуринизованной ДНК с последующим ацилированием аминопроизводного активированными эфирами ненасыщенных кислот,
или

где ДНК = фрагмент ДНК;
R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Y=(р-С6Н4)n, где n=0-2;
R4=Н, (СН2)nОН, где n=2-6;
Z=-(СН2)nСН(СН2ОН)СН2ОХ, где n=1-6, или (СН2)n-ОХ, где n=2-6;
Х - фосфодиэфирная группа, связывающая непредельный фрагмент с 5'- и/или 3'-концом фрагмента ДНК,
получаемые путем ПЦР-амплификации с использованием синтетического праймера, несущего на 5'- или 3'-конце ненасыщенную группу. 19. Модифицированные белки следующего строения:

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Х=NH, О, СН2, S;
Y=(р-С6Н4)n, где n=0-2;
R=(СН2)n, (СН2СН2О)n, где n=1-20,
получаемые путем ацилирования свободных аминогрупп белка активированными эфирами непредельных кислот,
или

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Y=(р-С6Н4)n, где n=0-2;
Х=NH, O, S, СН2;
R=(СН2)n, (СН2СН2О)n, где n=1-20;
W=NH, О, СН2;
F=(СН2)n, где n=1, 2;
Z=NH, S,
получаемые путем алкилирования сульфгидрильной или аминогруппы белка производными



или

где R=(СН2)n, (СН2СН2О)n, где n=1-20,
путем обработки рекомбинантного белка, содержащего концевой His-6 участок, метакриламидными производными нитрилотриуксусной кислоты в присутствии солей Ni(II). 20. Модифицированное пористое стекло (CPG) следующего строения:

где R1, R2=Н, алкил С1-С6, Ph, PhCH2-;
R3 = алкил С1-С6;
Y=(р-С6Н4)n, где n=0-2,
в качестве носителя для введения остатка непредельной кислоты по 3'-концу олигонуклеотидов формулы I по п.6 в условиях автоматического твердофазного синтеза. 21. Активированные эфиры следующего строения:

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Y=(р-С6Н4)n, где n=0-2;
Z=NH, О, СН2, S;
R=(СН2)n, (СН2СН2О)n, где n=1-20;
Х = сукцинимидоокси-, п-нитрофенокси-, пентафторфенокси- или любая другая акцепторная хорошая уходящая группа в качестве модифицирующего агента для получения белка формулы V. 22. Карбонильные соединения следующего строения:

где R1, R2, R3=Н, алкил С1-С6, Ph, PhCH2-;
Y=(р-С6Н4)n, где n=0-2;
Х=NH, О, S, СН2;
R=(СН2)n, (СН2СН2О)n, где n=1-20;
W=NH, О, СН2;
Z = галогенометил, винил или любой другой фрагмент, содержащий активную кратную связь,
в качестве модифицирующего агента для получения белка формулы VI. 23. Метакриламидные производные нитрилотриуксусной кислоты общей формулы
СН2=С(Ме)-СО-NH-R-СН(СООН)-N(СН2СООН)2,
где R=(СН2)n, (СН2СН2О)n, где n=1-20,
в качестве модифицирующего агента для получения белка формулы VII. 24. Биочип, выполненный на основе композиции по п.1, в котором сформированный на подложке слой геля разделен пустыми промежутками на несколько ячеек, причем каждая из ячеек может содержать либо не содержать иммобилизованные макромолекулы, а макромолекулы, иммобилизованные в разных ячейках, могут различаться по своей природе и свойствам. 25. Биочип по п.24, в котором указанные ячейки образуют регулярную одномерную или двумерную структуру (массив). 26. Биочип по п.24, при изготовлении которого нанесение полимеризационной смеси на подложку осуществляется при помощи автоматического устройства (робота), снабженного одним или несколькими микродиспенсерами. 27. Биочип по п.26, при изготовлении которого используются микродиспенсеры стержневого типа. 28. Биочип по п.26, при изготовлении которого используются бесконтактные микродиспенсеры струйного типа. 29. Биочип по п. 26, при изготовлении которого используются несколько микродиспенсеров, образующих регулярную структуру. 30. Биочип по п.24, при изготовлении которого одна или несколько подложек с нанесенными на них каплями полимеризационной смеси при полимеризации размещаются в герметичном контейнере в бескислородной инертной атмосфере с контролируемой влажностью. 31. Биочип по п.24, при изготовлении которого контейнер заполняется одним из следующих газов: N2, Аr, СО2. 32. Биочип по п.24, при изготовлении которого газовая среда в контейнере с подложками непрерывно или периодически обновляется. 33. Способ проведения ПЦР на биочипе по п.24 путем добавления амплификационного раствора, прямого (F) и обратного (R) праймеров и исследуемых образцов нуклеиновых кислот и инкубации биочипа в условиях циклических изменений температуры, обеспечивающих осуществление ПЦР-амплификации. 34. Способ проведения ПЦР на биочипе по п.24 путем инкубации биочипа при постоянной температуре с гибридизационным раствором, содержащим исследуемые образцы нуклеиновых кислот, для их гибридизации с иммобилизованными праймерами (синтетическими олигонуклеотидами), инкубации биочипа, содержащего гибридизованные с иммобилизованными праймерами нуклеиновые кислоты, с амплификационным раствором, содержащим прямой (F) и обратный (R) праймеры, при постоянной температуре, замены амплификационного раствора вне гелевых элементов биочипа гидрофобной жидкостью (минеральным маслом), которая полностью изолирует ячейки биочипа друг от друга, и инкубации биочипа в условиях циклических изменений температуры, обеспечивающих осуществление ПЦР-амплификации.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10