Способ контроля работы сепаратора минералов
Настоящее изобретение относится к области обогащения дробленого минерального сырья, а именно к способам контроля работы обогатительной установки - сепаратора минералов. В частности, оно может быть использовано для контроля работы двухстадийного рентгенолюминесцентного сепаратора минералов. Техническим результатом изобретения является обеспечение эффективного автоматического контроля работы двухстадийного сепаратора за счет выявления нарушений обнаружения обогащаемого минерала в каждой стадии сепаратора. Предложенный способ основан на подсчете числа обнаружений контролируемых объектов, проходящих через зону обнаружения отдельно для каждой стадии сепаратора. О положительном результате контроля судят по соотношению между числом обнаружений п1 в первой стадии сепаратора и числом обнаружений п2 в его второй стадии, приведенному в формуле изобретения. При этом для многоканального сепаратора минералов при подсчете числа обнаружений в каждой стадии сепаратора осуществляют подсчет числа обнаружений в каждом ее канале и полученные результаты суммируют. В качестве контролируемого объекта при осуществлении предлагаемого способа может быть выбран обогащаемый минерал. 2 з.п. ф-лы, 1 табл.
Настоящее изобретение относится к области обогащения дробленого минерального сырья, а именно к способам контроля работы обогатительной установки - сепаратора минералов. В частности, предлагаемое изобретение относится к способам контроля работы рентгенолюминесцентного сепаратора минералов, где для обогащения сырья используется свойство некоторых минералов люминесцировать под воздействием рентгеновского излучения в оптической области спектра.
Известен способ контроля работы рентгенолюминесцентного сепаратора, включающий введение эталонного образца обогащаемого минерала в зону обнаружения сепаратора, его периодическое облучение импульсами рентгеновского излучения, подсчет числа обнаружений и сравнение этого числа с числом циклов облучения /1/. Такой способ удобен для наладки и предпускового контроля работы сепаратора, но не может быть использован в процессе его функционирования в рабочем режиме при непрерывном прохождении обогащаемого материала через зону обнаружения сепаратора. В качестве прототипа выбран способ контроля, включающий периодическое введение индикаторов, обладающих люминесцентными и диамагнитными свойствами, в зону обнаружения сепаратора одновременно с прохождением обогащаемого материала, регистрацию сигналов люминесценции индикаторов, регистрацию сигналов, свидетельствующих о диамагнитных свойствах индикаторов, синхронизацию этих сигналов с сигналами ввода индикаторов, подсчет числа обнаружений индикаторов рентгенолюминесцентным блоком, его сравнение с числом введенных индикаторов и определение степени извлечения сепаратора по результатам сравнения /2/. К недостаткам такого способа контроля относятся усложнение конструкции сепаратора, так как в нем должны использоваться специальный узел ввода индикаторов и дополнительный узел их обнаружения по диамагнитным свойствам, сложность создания калиброванных эталонных индикаторов, а также трудности его применения в сепараторах мелких классов крупности минералов (-6+2), когда из-за малых размеров индикаторов сигнал "магнитного" датчика становится очень слабым. Все вышеописанные способы контроля рассчитаны на сепараторы, работающие в одностадийном режиме обогащения. Для двухстадийных сепараторов, где обогащаемый материал проходит последовательно две одинаковые стадии обогащения, на каждой из которых в концентрат выделяется часть обогащаемого минерала, использование вышеописанных способов контроля приводит к существенному усложнению конструкции сепаратора и затрудняет автоматизацию процесса контроля его работы. Предлагаемое изобретение решает задачу обеспечения эффективного автоматического контроля работы двухстадийного сепаратора за счет выявления нарушений обнаружения обогащаемого минерала в каждой стадии сепаратора. Поставленную задачу решает способ контроля работы сепаратора минералов, включающий подачу контролируемых объектов в зону обнаружения, облучение их рентгеновским излучением, регистрацию люминесценции контролируемых объектов и подсчет числа обнаружений при проходе контролируемых объектов через зону обнаружения, при этом для контроля работы двухстадийного сепаратора облучение, регистрацию люминесценции и подсчет числа обнаружений контролируемых объектов осуществляют отдельно для каждой стадии сепаратора и результат контроля считают положительным, если между числом обнаружений n1 в первой стадии сепаратора и числом обнаружений n2 в его второй стадии выполняется соотношение:




откуда

Таким образом, число элементов обогащаемого материала, извлеченных первой стадией
n1=N

а число элементов, извлеченных второй стадией
n2 = (N-n1)


откуда следует соотношение

или, переходя к паспортному коэффициенту извлечения Е:

Предлагаемый способ контроля работы сепаратора, включающий подсчет числа обнаружений контролируемых объектов на каждой стадии, основывается на определении отношения числа объектов, обнаруженных соответственно на первой и второй стадиях сепаратора, и сравнении этого отношения со значением, полученным из приведенного выше соотношения (8). Для многоканальных двухстадийных сепараторов предлагаемый способ предусматривает предварительное постадийное суммирование числа объектов, обнаруженных в каждом из каналов первой и второй стадий, т.е.

Еще одной особенностью предлагаемого способа контроля работы сепаратора минералов является то, что в качестве контролируемого объекта можно использовать сам обогащаемый минерал, т.е. введения в обогащаемый материал никаких специальных эталонных объектов не требуется. Очевидно, что, поскольку текущие значения обнаруженного числа объектов носят вероятностный характер, соотношения (5) - (8) можно рассматривать как математические ожидания, справедливые при неограниченном числе обнаруженных объектов. Для оценки справедливости конечного выражения (8) оценим его сходимость в функции числа обнаружений. Считая значения числа обнаружений распределенными по биномиальному закону, перепишем соотношения (5).-.(8) в вероятностной форме (см., например, /3/):
m1 = np,
m2=n(1-p)p=npq, (10)
где m1, m2 - математические ожидания соответственно для n1, n2;

q=l-p
Дисперсии D1, D2 указанных величин n1, n2 (также см. /3/):
D1=n


D2=n


В этих обозначениях соотношение (8) как соотношение математических ожиданий примет вид:

Для определения дисперсии этого отношения как функции двух случайных величин n1 и n2:

воспользуемся соотношением из /4/, переписав его для случая двух случайных величин в виде:

Заменив n1, n2, D1, D2 их выражениями через математические ожидания и исходные вероятности, получим для дисперсии соотношения (8):

а для среднеквадратического отклонения:

С учетом выражений (10) и (10а) перепишем последнее соотношение в форме:

Приняв за максимальное отклонение величину




1. Свидетельство РФ на полезную модель 10120, В 03 В 13/06, 1999 г. 2. Авторское свидетельство СССР 1105230, В 03 В 13/06, 1984 г. 3. Г. Хан, С. Шапиро. Статистические модели в инженерных задачах., М., "Мир", 1969, стр. 171. 4. Г. Хан, С. Шапиро. Статистические модели в инженерных задачах., М., "Мир", 1969, (7.7), стр.267. 5. Рентгеновский сепаратор люминесцентный ЛС-Д-4-03, Техническое описание. ТУ 4276-011-00227703-97, 1997 г.
Формула изобретения

где Е<1 - паспортный коэффициент извлечения сепаратора минералов, гарантируемый изготовителем. 2. Способ контроля по п.1, отличающийся тем, что при подсчете числа обнаружений в каждой стадии сепаратора осуществляют подсчет числа обнаружений в каждом его канале и полученные результаты суммируют. 3. Способ контроля по п. 1 или 2, отличающийся тем, что в качестве контролируемого объекта выбирают обогащаемый минерал.
РИСУНКИ
Рисунок 1