Производные ангидрида метиленбисфосфоновой кислоты, способы их получения, фармацевтическая композиция
Авторы патента:
Изобретение относится к новым производным ангидрида метиленбисфосфоновой кислоты формулы I, где Y1, Y2, Y3 и Y4 - группа OR1, NR2R3, OCOR1, OCNR2R3, O(CO)OR1, O(SO2)R1 или ОР(O)R2(OR3), где R1, R2 и R3 - Н, С1-22 алкил, арил, возможно замещенный или SiR3, где R3 - С1-С4 алкил, при условии, что по меньшей мере одна из групп Y1, Y2, Y3 и Y4 иная, чем группа OR1 или NR2R3, Q1 и Q2 - H, F, Cl, Br, I, способы получения этих новых соединений, а также фармацевтические препараты, содержащие эти новые соединения. Соединения оказывают более контролируемое действие на метаболизм и функции организма. 4 с. и 7 з.п.ф-лы, 5 табл.


a) Xn (n = 1-4) - ОН или ОМ, где М обозначает металл или группу аммония; Q1 и Q2 имеют те же значения, что и выше; Z представляет атом галогена или его аналог; А обозначает группу OCOR1, OCNR2R3, O(CO)OR1, O(SО2)R1, O(SO2)OR1 или OP(O)R2(OR3), где значения R1, R2 и R3 указаны выше, или
b) Xn (n = 1-4) - галоген или аналог; Z обозначает ОН или ОМ, где М обозначает металл или группу аммония; А, Q1 и Q2 имеют значения, указанные выше. Из тетрапроизводных I, полученных как описано выше, можно далее получить с) путем избирательного гидролиза три-, ди- и моно производных I неполного ангидрида согласно схеме 2:
Схема 2:

с) Yn (n = 4) - А --> Yn (n = 1-3) - А, где А имеет те же значения, что и выше в схеме 1. Течение гидролиза может быть отслежено либо хроматографически, либо с помощью 31Р-ЯМР спектроскопии. Реакция может быть прервана, когда концентрация желательного неполного ангидрида (по меньшей мере одна из групп Y - ОН или ОМ) станет близка к наивысшей, и продукт сможет быть выделен из реакционной смеси или как кислота, или как соль путем осаждения, экстракции или хроматографически. Ангидриды смешанного сложного эфира, эфирамида или амидоэфира могут быть получены, главным образом, исходя из молекулы, отвечающей формуле I, где группы Y1, Y2, Y3 и Y4 представляют выбранное количество вышеупомянутых групп Х или других групп, указанных для Y, отличных от OR1 или NR2R3. Указанное соединение может реагировать согласно методу а) с подходящим галогенангидридом кислоты или согласно методу b) с кислотой или ее солью с металлом. Новые соединения согласно изобретению могут быть введены энтерально или парентерально. Подвергаются обсуждению все общепринятые формы введения, такие как таблетки, капсулы, гранулы, сиропы, растворы, имплантаты и суспензии. Также могут быть использованы все фармацевтически приемлемые вспомогательные средства для приготовления лекарственной формы, растворения и введения, такие как стабилизирующие агенты, регуляторы вязкости, диспергаторы и буферы. Подходящие вспомогательные средства включают, например, тартратные и цитратные буферы, спирты, EDTA и другие нетоксичные комплексообразователи, твердые и жидкие полимеры и другие стерильные субстраты, крахмал, лактозу, маннит, метилцеллюлозу, тальк, кремниевые кислоты, жирные кислоты, желатин, агар-агар, фосфат кальция, стеарат магния, животные и растительные жиры и, если желательно, ароматизирующие и подслащивающие вещества. Дозировка зависит от различных факторов, например от способа введения, вида, возраста и индивидуального состояния. Суточные дозы составляют приблизительно от 1 до 1000 мг, обычно от 10 до 200 мг на персону, и они могут быть введены как единая доза или могут быть разделены на несколько доз. Далее приведен состав обычной капсулы и таблетки:
Капсула - мг/капсула
Активное вещество - 100,0
Крахмал - 20,0
Стеарат магния - 1,0
Таблетка - мг/таблетка
Активное вещество - 400,0
Микрокристаллическая целлюлоза - 20,0
Лактоза - 67,0
Крахмал - 10,0
Тальк - 4,0
Стеарат магния - 1,0
Соединения настоящего изобретения могут быть приготовлены в виде препарата для внутримышечного или парентерального введения, например, в виде концентрата для вливания, где в качестве вспомогательных средств могут быть использованы, например, стерильная вода, фосфатный буфер, хлорид натрия, гидроксид натрия, хлороводородная кислота или другие подходящие фармацевтически приемлемые вспомогательные средства. Целью следующих примеров является иллюстрация изобретения, однако без какого-либо его ограничения. Пример 1: Р,Р-Диметил-Р'-метансульфонил(дихлорметилен) бисфосфонат метилтрибутиламмониевая соль и свободная кислота
12,2 г (0,025 моль) метилтрибутиламмониевой соли триметил(дихлорметилен) бисфосфоната и 2,9 г (0,025 моль) мезилхлорида растворяют в 150 мл безводного ацетонитрила и раствор перемешивают в течение 20 мин при кипячении в колбе с обратным холодильником. За ходом реакции следят 31Р-ЯМР. Растворитель выпаривают в вакууме и получают около 13,2 г (96% от теоретического) желтой маслянистой метилтрибутиламмониевой соли Р, Р-диметил-Р' -метансульфонил (дихлорметилен) бисфосфоната (31Р-ЯМР (CDCl3): 13,12 м.д. (Р), -2,42 м.д. (Р'), 2Jрр, = 20,3 Гц, 3Jрн=10,7 Гц), концентрация которой равна 99,5% и из которой соответствующая кислота может быть выделена в свободном состоянии обработкой кислотой. Например, следующие метиленбисфосфонатные Р,Р-диэфир-Р'-моноангидриды и их четвертичные аммониевые соли могут быть получены аналогично:
Метилтрибутиламмониевая соль Р,Р-диметил-Р'-пивалоил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 15,13 м.д. (Р), -0,63 м.д. (Р'), 2Jpp,=18,9 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-пентил (дихлорметилен) бисфосфоната, 31Р-ЯМР (CDCl3): 15,12 м.д. (Р), -1,04 м.д(Р'), 2Jpp,=18,6 Гц, 3Jрн=10,6 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-бензоил (дихлорметилен)бисфосфоната, 31Р-ЯМР (СDСl3): 14,87 м.д. (Р), -0,79 м.д. (Р'), 2Jрр,=23,0 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-трихлорацетил (дихлорметилен)бисфосфоната, 31Р-ЯМР (СDСl3) 14,03 м.д. (Р), 1,04 м.д. (Р'), 2Jрр,=19,9 Гц, 3Jрн=10,8 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-пивалоил (дихлорметилен) бисфосфоната, 31Р-ЯМР (CDCl3): 8,99 м.д. (Р), 0,24 м.д. (Р'), 2Jрр,=24,5 Гц, 3Jрн=6,6 Гц. Этилтрибутиламмониевая соль Р,Р-диэтил-Р'-метансульфонил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 9,90 м. д. (Р), -1,29 м.д. (Р'), 2Jрр,=22,8 Гц, 3Jрн=7,9 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-метансульфонил(дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 7,79 м.д. (Р), -1,45 м.д. (Р'), 2Jрр,=23,3 Гц, 3Jрн=6,4 Гц. Метилтрибутиламмониевая соль Р-метил-Р-изопропил-Р'-метансульфонил(дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 10,80 м.д. (Р), -2,21 м.д. (Р'), 2Jpp,=21,2 Гц, 3Jрн=6,5 Гц, 3Jр,н=10,5 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-бензолсульфонил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 13,07 м.д. (Р), -2,28 м.д. (Р'), 2Jрр,=21,0 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-п-толуолсульфонил(дихлорметилен)бисфосфоната,31Р-ЯМР (CDCl3): 13,27 м.д. (Р), -2,54 м.д. (Р'), 2Jрр,=20,2 Гц, 3Jрн=10,3 Гц. Метилтрибутиламмониевая соль Р, Р-диметил-Р'-2,4,6-триметилбензолсульфонил(дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 13,53 м.д. (Р), -2,81 м. д. (Р'), 2Jpp,=22,0 Гц, 3Jрн=10,8 Гц. Метилтрибутиламмониевая соль Р, Р-диметил-Р'-2,4,6-триизопропилбензолсульфонил(дихлорметилен)бисфосфоната, 31Р-ЯМР (СDСl3): 13,54 м.д. (Р), -2,83 м.д. (Р'), 2Jpp,=21,9 Гц, 3Jрн=10,8 Гц. Метилтрибутиламмониевая соль Р, Р-диметил-Р'-d-10-камфорсульфонил (дихлорметилен) бисфосфоната, 31Р-ЯМР (СDСl3): 13,06 м.д. (Р), -2,82 м.д. (Р'), 2Jрр,=20,7 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-пивалоил (дибромметилен) бисфосфоната, 31Р-ЯМР (CDCl3): 15,16 м.д. (Р), -0,90 м.д. (Р'), 2Jрр,=14,5 Гц, 3Jрн=10,9 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-метансульфонил (дибромметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 12,99 м.д. (Р), -2,83 м.д. (Р'), 2Jрр,=15,7 Гц, 3Jрн=10,6 Гц. Метилтрибутиламмониевая соль Р, Р-диметил-Р'-трихлорметан сульфонил(дибромметилен)бисфосфоната, 31Р-ЯМР (СDСl3): 13,12 м.д. (Р), -2,98 м.д. (Р'), 2Jрр,=15,4 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-п-толуолсульфонил(дихлорметилен)бисфосфоната,31P-ЯMP (CDCl3): 13,13 м.д. (Р), -2,95 м.д. (Р'), 2Jрр,=15,1 Гц, 3Jpн=10,8 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-пивалоил (монобромметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 20,51 м.д. (Р), 0,95 м.д (Р'), 2Jрр=6,0 Гц, 2Jрн=16,5 Гц, 3Jрн=10,9 Гц. Meтилтpибyтилaммoниeвaя соль Р, Р-диметил-Р'-метансульфонил (монобромметилен)бисфосфоната, 31Р-ЯМP (CDCl3): 17,46 м.д. (Р), 1,19 м.д. (Р'), 2Jрр=7,3 Гц, 3Jрн=17,3 Гц, 3Jрн=11,0 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-ацетил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 13,71 м.д. (Р), -4,10 м.д. (Р'), 2Jрр,=18,9 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-пропионил (дихлорметилен)бисфосфоната, 31P-ЯMP (СDСl3): 14,57 м.д. (Р), -1,61 м.д. (Р'), 2Jрр,=19,1 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-изовалероил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 14,17 м.д. (Р), -1,18 м.д. (Р'), 2Jрр,=18,3 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-диметилкарбамоил(дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 14,80 м.д. (Р), -1,62 м.д. (Р'), 2Jрр,=18,2 Гц, 3Jрн=10,6 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-ацетил (дибромметилен)бисфосфоната, 31Р-ЯМР (СDСl3): 14,73 м.д. (Р), -2,00 м.д. (Р'), 2Jрр,=13,7 Гц, 3Jрн=10,8 Гц. Метилтрибутиламмониевая соль Р, Р-диметил-Р'-пропионил (дибромметилен) бисфосфоната, 31Р-ЯМР (СDСl3): 14,17 м.д. (Р), -1,40 м.д. (Р'), 2Jрр,=14,0 Гц, 3Jрн=10,7 Гц. Метилтрибутиламмониевая соль Р,Р-диметил-Р'-диметилкарбамоил(дибромметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 14,92 м.д. (Р), -1,92 м.д. (Р'), 2Jрр,=14,0 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-ацетил (монохлорметилен)бисфосфоната, 31Р-ЯМР (СDСl3): 14,49 м.д. (Р), 3,07 м.д. (Р'), 2Jрр=8,4 Гц, 2Jрн=17,1 Гц, 3Jpн=7,7 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-пивалоил (монохлорметилен)бисфосфоната, 31P-ЯMP (CDCl3): 15,02 м.д. (Р), 3,02 м.д. (Р'), 2Jрр=9,8 Гц, 2Jрн=17,4 Гц, 3Jрн=7,1 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-пивалоил (бромхлорметилен)бисфосфоната и
N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-метансульфонил(бромхлорметилен)бисфосфоната. Получение исходных материалов:
Четвертичные моноаммониевые соли сложных триэфиров монохлор-, дихлор-, монобром или (дибромметилен) бисфосфоната для использования в качестве исходных материалов могут быть получены, например, путем обработки соответствующего сложного тетраэфира одним эквивалентом третичного амина в сухом инертном растворителе при температуре около 25-100oС, при этом за ходом реакции можно следить с помощью 31Р-ЯМР. Следующий пример иллюстрирует получение исходных материалов:
30,1 г (0,1 моль) тетраметил(дихлорметилен)бисфосфоната растворяют в 60 мл безводного хлороформа и добавляют 18,6 г (0,1 моль) безводного трибутиламина. Раствор перемешивают при нагревании с обратным холодильником в течение 4 ч и растворитель выпаривают в вакууме. Выход составляет около 50 г (100% от теоретического) совершенно бесцветной метилтрибутиламмониевой соли триметил(дихлорметилен) бисфосфоната, концентрация которой 98%. (31Р-ЯМР (CDCl3): 15,50 м.д. (Р), 4,25 м.д. (Р'), 2Jрр,=16,6 Гц.)
Пример 2: Р,Р-Диметил-Р'-диметилфосфорил (дихлорметилен) бисфосфонат метилтрибутиламмониевая соль и свободная кислота
4,86 г (0,01 моль) метилтрибутиламмониевой соли триметил(дихлорметилен)бисфосфоната растворяют в 50 мл безводного ацетонитрила и добавляют 1,45 г (0,01 моль) диметилхлорфосфита и раствор перемешивают при нагревании с обратным холодильником в течение 1 ч (за ходом реакции следят 31Р-ЯМР). Растворитель выпаривают в вакууме, в результате чего получают около 5,6 г (96% от теоретического) коричневатой маслянистой метилтрибутиламмониевой соли Р,Р-диметил-Р'-диметилфосфорил (дихлорметилен) бисфосфоната 31Р-ЯМР (CDCl3): 13,90 м.д. (Р), -4,84 м.д. (Р'), -10,23 м.д. (Р''), 2Jрр,= 20,3 Гц, 2Jp'p''= 27,7 Гц, 3Jp'н=10,7 Гц, 3Jр"н=11,7 Гц), концентрация которой равна около 90% и из которой соответствующая кислота может быть выделена в свободном состоянии обработкой кислотой. Например, следующие фосфорил(дихлорметилен)бисфосфонаты и их четвертичные аммониевые соли могут быть получены аналогично:
Метилтрибутиламмониевая соль Р, Р-диметил-Р'-диизопропилфосфорил (дихлорметилен) бисфосфоната, 31Р-ЯМР (CDCl3): 14,95 м.д. (Р), -4,84 м.д. (Р'), -13,98 м. д. (Р''), 2Jрр, =20,6 Гц, 2Jp'p''=26,1 Гц, 3Jрн=10,6 Гц, 3Jр"н=7,8 Гц. N-изопропилпиридиниевая соль Р,Р-диизопропил-Р'-диметилфосфорил(дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): 9,22 м.д. (Р), -3,74 м.д. (Р'), -9,25 м.д. (Р"), 2Jpp,=22,3 Гц, 2Jp'p''=27,4 Гц. Метилтрибутиламмониевая соль Р,Р-ди(триметилсилил)-Р'-ди(триметилсилил) фосфорил (дихлорметилен)бисфосфоната, 31Р-ЯМР (CDCl3): -7,38 м.д. (Р), -4,51 м.д. (Р'), -29/00 м.д. (Р''), 2Jрр,=24,2 Гц, 2Jр'р''=22,6 Гц. Пример 3: Р,Р,Р'-Триметил-Р'-пивалоил (дихлорметилен) бисфосфонат
2,9 г (0,01 моль) Р,Р,Р'-триметил (дихлорметилен) бисфосфоната и 1,7 г (0,014 моль) пивалоилхлорида растворяют в 50 мл безводного ацетонитрила и раствор перемешивают при нагревании с обратным холодильником в течение 1,5 ч (за ходом реакции следят 31Р-ЯМР). Растворитель и избыток реагентов выпаривают в вакууме, в результате чего получают около 3,3 г (90% от теоретического) коричневатого маслянистого Р,Р,Р'-триметил-Р'-пивалоил (дихлорметилен) бисфосфоната (31Р-ЯМР (CDCl3): 10,41 м.д. (Р), 9,17 м.д. (Р'), 2Jрр,=23,7 Гц, 3Jрн=10,9 Гц, 3Jр'н=10,9 Гц)). Например, следующие Р,Р,Р'-триэфир-Р-моноангидриды (дихлорметилен)бисфосфоновой кислоты могут быть получены аналогично:
Р, Р, Р' - Триизопропил-р'-пивалоил (дихлорметилен) бисфосфонат (31Р-ЯМР (СDСl3): 6,40 м.д. (Р), 4,71 м.д. (Р'), 2Jpp,=26,2 Гц, 3Jрн =6,5 Гц, 3Jр'н= 6,7 Гц). Р, Р, Р'-Триизопропил-Р'-метансульфонил (дихлорметилен) бисфосфонат (31Р-ЯМР (CDCl3): 5,32 м.д. (Р), 0,39 м.д. (Р'), 2Jpp,=24,8 Гц, 3Jрн=6,4 Гц, 3Jр'н=6,8 Гц). Р, Р-Диметил-Р'-триметилсилил-Р'-пивалоил(дихлорметилен) бисфосфонат (31Р-ЯМР (CDCl3): 12,59 м.д. (Р), -2,10 м.д. (Р'), 2Jрр,=22,7 Гц, 3Jрн=11,0 Гц). Пример 4: Смешанная соль дипиперидиния-метилтрибутиламмония Р-метил-Р'-монометилфосфорил (дихлорметилен) бисфосфоната и свободная кислота
2,9 г (0,005 моль) метилтрибутиламмониевой соли Р,Р-диметил-Р'-диметилфосфорил(дихлорметилен)бисфосфоната и 12 мл безводного пиперидина перемешивают в течение 1 ч при около 80oС (за ходом реакции следят 31Р-ЯМР) и избыток пиперидина выпаривают в вакууме, в результате чего получают около 3,5 г (97% от теоретического) коричневатой смешанной соли дипиперидиния-метилтрибутиламмония Р-метил-Р'-метилфосфорил(дихлорметилен)бисфосфоната (31Р-ЯМР (CDCl3): 7,00 м.д. (Р), -0,89 м.д. (Р'), -7,51 м.д. (Р"), 2Jрр,= 16,7 Гц, 2Jp'p''=28,9 Гц, 3Jрн=10,0 Гц, 3Jр''н=11,5 Гц), концентрация которой около 90% и из которой соответствующая кислота может быть выделена в свободном состоянии обработкой кислотой. Пример 5: Р,Р-Диметил-Р',Р'-бис(трихлорацетил) (дихлорметилен) бисфосфонат
4,86 г (0,01 моль) метилтрибутиламмониевой соли Р,Р,Р-триметил (дихлорметилен)бисфосфоната и 3,64 г (0,02 моль) трихлорацетилхлорида в 50 мл безводного ацетонитрила перемешивают при нагревании с обратным холодильником в течение 2 ч и растворитель выпаривают в вакууме, в результате чего получают около 8 г маслянистого остатка после выпаривания который содержит в соотношении около 1:1 Р,Р-диметил - Р',Р' -ди (трихлорацетил) (дихлорметилен) бисфосфонат (31Р-ЯМР (СDСl3): 14,25 м.д. (Р), 0,11 м.д. (Р'), 2Jрр,=20,3 Гц, 3Jрн=10,6 Гц) и метилтрибутиламмониевую соль Р,Р-диметил-Р'-трихлорацетил (дихлорметилен)бисфосфоната (см. пример 1). Пример 6: Динатрий Р-метил-Р'-ацетил(дихлорметилен) бисфосфонат и свободная кислота
3,9 г (0,01 моль) смешанной соли динатрия-пиперидиния Р-метил(дихлорметилен)бисфосфоната и 40 мл ацетангидрида перемешивают при комнатной температуре около 2 суток. Смесь охлаждают в ледяной воде и осадок отфильтровывают и промывают ацетоном и сушат, в результате получают 3,3 г (96% от теоретического) бесцветной кристаллической динатрий Р-метил-Р'-ацетил(дихлорметилен)бисфосфоната (31Р-ЯМР (D2O): 9,03 м.д. (Р), 4,01 м.д. (Р'), 2Jpp, = 16,5 Гц, 3Jрн=10,4 Гц), концентрация которой около 100% и из которой соответствующая кислота может быть выделена в свободном состоянии обработкой кислотой. Например, следующие симметричные сложные эфирангидриды (дихлорметилен) бисфосфоната и их соли могут быть получены аналогично:
соль бис(диэтиламмония) Р-метил-Р'-пивалоил (дихлорметилен) бисфосфоната, 31Р-ЯМР (СDСl3): 5,68 м.д. (Р), 1,78 м.д. (Р'), 2Jрр'=25,1 Гц, 3Jрн=9,9 Гц. Пример 7: Динатрий Р,Р'-диацетил(дихлорметилен) бисфосфонат и свободная кислота
6,7 г (0,02 моль) тетранатриевой соли (дихлорметилен) бисфосфоновой кислоты и 220 мл ацетангидрида перемешивают в течение 60 ч при около 60oС (за ходом реакции следят 31Р-ЯМР) и охлаждают. Осадок отфильтровывают и промывают ацетоном и подвергают перекристаллизации из смеси этанол/вода. После сушки получают около 7,1 г (95% от теор.) бесцветного кристаллического динатрий Р, Р'-диацетил(дихлорметилен)бисфосфоната (31Р-ЯМР (D2O): 2,84 м.д. (Р и Р')), концентрация которой около 100% и из которой соответствующая кислота может быть выделена в свободном состоянии обработкой кислотой. Например, следующие симметричные диангидриды (дихлорметилен)бисфосфоновой кислоты могут быть получены аналогично:
Динатрий Р, Р'-дибутироил (дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 2,90 м.д. (Р и Р'). Динатрий Р, Р'-дивалероил (дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 3,13 м.д. (Р и Р'). Динатрий Р,Р'- ди (пивалоил)(дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 3,74 м.д. (Р и Р'). Динатрий Р, Р'-ди (бензоил)(дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 3,85 м.д. (Р и Р'),
Динатрий Р, Р'-ди (изобутироил)(дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 2,75 м.д. (Р и Р'). Динатрий Р, Р'-дигексаноил (дихлорметилен) бисфосфонат, 31Р-ЯМР (D2O): 3,03 м.д. (Р и Р'). Пример 8: Метилтрибутиламмониевая соль Р,Р-бис (диэтиламидо)- Р'-этоксикарбонил(дихлорметилен)бисфосфоната и свободная кислота
1,895 г (0,003 моль) метилтрибутиламмониевой соли Р,Р-бис (диэтиламидо)-Р'- метил (дихлорметилен) бисфосфоната растворяют в 11 мл сухого ацетонитрила. Смесь нагревают с рубашкой и перемешивают, пока температура внутри не достигнет 80oС. К смеси при 80oС добавляют по каплям в течение 15 минут раствор, который содержит 355 мг (0,003 моль) этилхлорформиата в 11 мл сухого ацетонитрила. Смесь перемешивают в течение 3 ч 45 мин, пока температура внутри 80-82oС, и выпаривают досуха. Смесь оставляют для кристаллизации в течение ночи, в результате получают 2,1 г метилтрибутиламмониевой соли Р, Р-бис(диэтиламидо)-Р'-этоксикарбонил(дихлорметилен) бисфосфоната (31Р-ЯМР (D2O): 27,11 м.д. (Р), 0,73 м.д. (Р'), 2Jpp=22,3 Гц), концентрация которой около 90% и из которой соответствующая кислота может быть выделена в свободном виде обработкой кислотой. Пример 9: Ди(метилтрибутиламмониевая) соль Р,Р-ди (этоксикарбонил)(дихлорметилен)бисфосфоната и свободная кислота
3,36 г (0,005 моль) ди(метилтрибутиламмониевой) соли Р, Р'- диметил(дихлорметилен)бисфосфоната растворяют в 20 мл безводного ацетонитрила, к раствору добавляют 2,17 г (0,02 моль) этилхлорформиата и перемешивают в течение 30 мин при около 75oС. Растворитель выпаривают в вакууме, в результате получают 5,03 г (95% от теоретического) маслянистой ди(метилтрибутиламмониевой) соли Р,Р'-ди(этоксикарбонил)(дихлорметилен)бисфосфоната (31Р-ЯМР (CDCl3): 0,40 м.д. (Р и Р')), концентрация которой около 85% и из которой соответствующая кислота может быть выделена в свободном виде обработкой кислотой. Например, следующие симметричные диангидриды (дихлорметилен) бисфосфоната могут быть получены аналогично:
динатрий, Р,Р'-бис (диметилкарбонил) (дихлорметилен) бисфосфонат. Пример 10: Р,Р-Диметил-Р'-пивалоил-Р-триметилсилил (дихлорметилен)бисфосфонат
2,2 г (0,004 моль) метилтрибутиламмониевой соли Р,Р-диметил-Р'-пивалоил(дихлорметилен)бисфосфоната растворяют в 20 мл безводного ацетонитрила и раствор охлаждают до 0oС и добавляют 0,45 г (0,0042 моль) хлортриметилсилана в 5 мл безводного ацетонитрила при перемешивании при 0-5oС. После добавления смесь перемешивают в течение 10 мин при 0-5oС и 1 ч без охлаждения и растворитель выпаривают в вакууме, в результате получают желаемый продукт в виде коричневого масла со степенью чистоты около 80%. (31Р-ЯМР (CDCl3): 12,59 м. д.(Р), -2,10 м.д. (Р'), 2Jрр=22,7 Гц, 3Jрн=11,0 Гц.)
Пример 11: Дипиридиниевая соль Р,Р'-ди(тетрадеканоил) (дихлорметилен)бисфосфоната
1,0 г (4,08 ммоль) (дихлорметилен) бисфосфоновой кислоты и 10 мл сухого тетрагидрофурана смешивают и добавляют 2,0 г (8,16 ммоль) тетрадеканоилхлорида и 1,3 г (16,32 ммоль) сухого пиридина при 23oС. Серую суспензию перемешивают при около 23o С в течение 3 ч и упаривают досуха в вакууме. Выход 4,3 г (100% от теор. ), из которого 3,4 г дипиридиниевой соли Р,Р'-ди(тетрадеканоил) (дихлорметилен) бисфосфоната (31Р-ЯМР (CDCl3): 1,65 м.д. (Р и Р')), концентрация которой около 100% (31Р-ЯМР), и 0,9 г гидрохлорида пиридиния. Аналогично получают также:
Дипиридиниевую соль Р,Р'-ди(октадеканоил)(дихлорметилен) бисфосфоната, (31Р-ЯМР (CDCl3): 1,60 м.д. (Р и Р')). Пример 12: Тринатрий моногексаноилокси (дихлорметилен)бисфосфонат
5,0 г (15,0 ммоль) тетранатрий (дихлорметилен)бисфосфоната и 23,1 г (108,3 ммоль) ангидрида капроевой кислоты смешивают при около 85oС в течение 7 ч и при комнатной температуре в течение 18 ч (за ходом реакции следят 31Р-ЯМР). Смесь фильтруют и промывают 2 мл ацетона и сушат в вакууме, в результате получают около 5,4 г (88% от теор.) кристаллического тринатрий моногексаноилокси(дихлорметилен)бисфосфоната (31Р-ЯМР (D2O): 7,57 м.д. (Р), 4,59 м. д. (Р), 2Jpp=17,6 Гц) с концентрацией 81%, в то время как концентрация исходного материала 16% и концентрация динатрий Р,Р'-дигексаноилокси (дихлорметилен)бисфосфоната - 3% (31Р-ЯМР). Пример 13: Испытания in vitro молекул пролекарства, ВЭЖХ, используемая в испытаниях in vitro
Клодронат и молекулы пролекарства клодроната анализируют методом ВЭЖХ с обращенной фазой/ионной парой (изократная программа для клодроната; градиентная программа для одновременного анализа клодроната и молекулы пролекарства), где определение соединений основано на измерении светорассеяния, вызванного неиспарившимися соединениями. Оборудование:
ВЭЖХ Merck LaChrom (Merck Hitachi Ltd., Япония) Kromasil 100 RP-C8 (250 х 4,6 в диам., 5 мкм) (Higgins Analytical Inc., США)
Элюент:
Изократная программа: буфер метанол/ацетат аммония (3:97, рН 4,6), который содержит 2,25% бутиламина в качестве реагента ионной пары, поток 1,2 мл/мин. Градиентная программа: метанол (3%-->40-60% в течение 1 мин - 6 мин)/ацетат аммония (рН 4,6), который содержит 2,25% бутиламина в качестве реагента ионной пары, поток 1,2 мл/мин. Детектор: детектор светорассеяния Sedex 55 (Sedere, Франция)
Настройка: температура детектора 70oС, давление испаряющего газа (фильтрованный воздух) 2,2 бар. Растворимость в воде молекул пролекарства
Растворимости в воде молекул пролекарства определяют в фосфатном буфере (50 мМ, рН 7,4) при комнатной температуре. Избыток соединения, которое должно быть испытано, растворяют в около 5 мл фосфатного буфера. Суспензию перемешивают в течение 2 часов, суспензию фильтруют и концентрацию пролекарства в фильтрате определяют ВЭЖХ. Растворимость в воде клодроната определяют таким же методом. Растворимости в воде соединений, подвергнутых испытанию, показаны в таблице 1. Коэффициент распределения молекул пролекарства
Растворимость в жирах соединений испытания исследуют путем определения коэффициентов распределения (Р) соединений при рН 7,4 и 2,0. Анализ проводят в смеси октанол/буфер. Когда применяют метод анализа с использованием смеси октанол/буфер, используемые 1-октанол и фосфатный буфер (50 мМ, рН 7,40,


где Ci - концентрация исследуемого соединения перед распределением;
Cа - концентрация исследуемого соединения после распределения;
Va - объем-буферной фазы;
Vo - объем фазы октанола. Величины коэффициентов распределения (log P) молекул пролекарства, подвергаемого исследованию, показаны в таблице 2. Химический гидролиз молекул пролекарства
Химический гидролиз молекул пролекарства анализируют в фосфатном буфере (50 мМ,

Скорость ферментативного гидролиза молекул пролекарства определяют в смеси плазма/буфер (80%-20%) при рН 7,40 и при 37oС. Соединение, которое должно быть испытано, растворяют в части буфера и после растворения добавляют плазму с температурой 37oС. Раствор перемешивают магнитной мешалкой и пробу 0,25 мл отбирают из смеси с интервалами 1-360 мин (в зависимости от молекулы, которую испытывают), к пробе добавляют 0,25 мл метанола (денатурирует белки). Пробу центрифугируют, прозрачный супернатант упаривают досуха, остаток растворяют в элюенте метода ВЭЖХ и остаточную концентрацию пролекарства и количество образовавшегося клодроната анализируют ВЭЖХ. Из полученных концентраций строят график первого порядка (остаточное количество пролекарства как функция времени), откуда определяют константу диссоциации и период полураспада (T1/2). Периоды полураспада соединений, подвергаемых испытанию, показаны в таблице 3. Пример 14: Действие на индуцированную ПТГ резорбцию кости in vitro и абсорбция и гидролиз соединений in vivo
Действие на индуцированную ПТГ резорбцию кости на черепной кости мыши. Новорожденную мышь метят путем подкожной инъекции 45Са за четыре дня перед умерщвлением. Фрагменты черепной кости микропрепарируют из затылочных костей, подвергают предварительной инкубации в культуральной среде с индометацином, промывают и затем культивируют в течение трех суток с бисфосфонатным пролекарством или без него. Резорбцию кости стимулируют паратиреоидным гормоном (ПТГ, 10 нМ) и измеряют действие на эту стимулированную резорбцию. Как представлено в таблице 4, ингибирование резорбции соединениями очевидно. Ингибирование бисфосфонатными пролекарствами даже сильнее, чем исходным лекарственным веществом. Абсорбция и гидролиз in vivo
Абсорбцию и гидролиз соединений in vivo изучают на голодных крысах. Абсорбцию определяют из общего количества, выделившегося с мочой в течение 72 часов после введения. Для определения пероральной биодоступности выделившееся количество после перорального введения сравнивают с таковым после внутривенного введения. Пробы мочи анализируют на исходное лекарственное вещество путем масс-селективной или азотной фосфоробнаруживающей газовой хроматографии. Результаты, представленные в таблице 5, показывают повышенную биодоступность бисфосфонатных пролекарств по сравнению с таковой исходного лекарственного вещества.
Формула изобретения

где Y1, Y2, Y3 и Y4 обозначают группу OR1, NR2R3, OCOR1, OCONR2R3, O(CO) OR1, O(SO2)R1, или OP(O)R2(OR3), где R1, R2 и R3 обозначают, независимо друг от друга, водород, линейный или разветвленный, необязательно замещенный, необязательно ненасыщенный C1-C22 алкил, необязательно замещенный арил или силил SiR3, где R3 обозначает C1-C4 алкил, при условии, что в формуле I по меньшей мере одна из групп Y1, Y2, Y3 и Y4 является иной, чем группа OR1 или NR2R3;
Q1 и Q2 обозначают, независимо друг от друга, водород, фтор, хлор, бром или иод,
включая стереоизомеры, такие, как геометрические изомеры и оптически активные изомеры, соединений, а также фармакологические приемлемые соли этих соединений. 2. Производные ангидрида метиленбисфосфоновой кислоты по п.1, отличающиеся тем, что Q1 и Q2 в формуле I оба являются атомами хлора. 3. Производные ангидрида метиленбисфосфоновой кислоты по п.1 или 2, отличающиеся тем, что две из групп Y1, Y2, Y3 и Y4 в формуле I являются группами OCOR1, где R1 такой, как определено в п.1. 4. Производные ангидрида метиленбисфосфоновой кислоты по п.3, отличающиеся тем, что где R1 обозначает линейный или разветвленный C1-C22 алкил или фенил. 5. Производные ангидрида метиленбисфосфоновой кислоты по п.1 или 2, отличающиеся тем, что две из групп Y1, Y2, Y3 и Y4 в формуле I являются группами OR1, где R1 такой, как определено в п.1. 6. Производные ангидрида метиленбисфосфоновой кислоты по п.5, отличающиеся тем, что R1 обозначает линейный или разветвленный C1-C22 алкил или фенил. 7. Производные ангидрида метиленбисфосфоновой кислоты по п.3 или 5, отличающиеся тем, что третья из групп Y1, Y2, Y3 и Y4 в формуле I выбрана из группы, состоящей из алкилсульфонила, низший алкилкарбоксигруппы, бензоила, арилсульфонила, моно- и ди-низший алкил-фосфорила. 8. Производные ангидрида метиленбисфосфоновой кислоты по п.1, отличающиеся тем, что представляют собой соединение, выбранное из группы, включающей
динатрий Р,Р'-диацетил(дихлорметилен)бисфосфонат или свободную кислоту,
динатрий Р,Р'-дибутироил (дихлорметилен) бисфосфонат или свободную кислоту,
динатрий Р, Р'-ди (пивалоиил) (дихлорметилен)бисфосфонат или свободную кислоту,
динатрий Р, Р'-ди (бензоил) (дихлорметилен)бисфосфонат или свободную кислоту,
динатрий Р, Р'-ди (изобутироил)(дихлорметилен)бисфосфонат или свободную кислоту,
динатрий Р,Р'-ди (тетрадеканоил) (дихлорметилен) бисфосфонат или свободную кислоту,
динатрий Р, Р'-ди (октадеканоил) (дихлорметилен) бисфосфонат или свободную кислоту. 9. Способ получения производных ангидрида метиленбисфосфоновой кислоты согласно п.1, отличающийся тем, что исходное соединение, отвечающее формуле II

где по меньшей мере одна из групп Х1-Х4 или все являются независимо друг от друга ОН или ОМ, где М может быть металлом или группой аммония;
Q1 и Q2 обозначают водород или галоген,
подвергают избирательному взаимодействию с желательным производным кислоты Z-A, где А обозначает группу OCOR1, OCONR2R3, О(СО)OR1, O(SО2)R1 или OP(O)R2(OR3) и Z обозначает галоген или аналог, и для получения производных I три-, ди- и мононеполного ангидрида полученные тетраангидриды подвергают избирательному гидролизу. 10. Способ получения производных ангидрида метиленбисфосфоновой кислоты согласно п. 1, отличающийся тем, что исходное вещество, отвечающее формуле II, где по меньшей мере одна из групп X1-X4 или все являются независимо друг от друга атомами галогена или аналогами галогена, подвергают взаимодействию с выбранной кислотой или выбранными кислотами (A-OH) (Z=OH) или с ее солью с металлом (A-OM) (Z= OM), где А и М имеют те же значения, что и в п.9, и, наконец, удаляют лишние группы Х и необязательно лишние группы Y, например, путем гидролиза водой и для получения производных I три-, ди- и мононеполного ангидрида полученные выше тетраангидриды подвергают избирательному гидролизу. 11. Фармацевтическая композиция для лечения костных заболеваний, в частности нарушений формирования и резорбции костей, а также болезней мягких тканей, в частности состояний отложения, минерализации и нарушений окостенения, отличающаяся тем, что в качестве активного агента она содержит производное ангидрида метиленбисфосфоновой кислоты формулы I по п.1.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Похожие патенты:
Способ получения 2-оксо -2- метил -4- диэтиламино -5,5- диметил -1,3,2- оксазафосфол -3-ина // 2026299
Изобретение относится к химии фосфоразотсодержащих гетероциклических соединений, а именно к способам получения соединения формулы H3C - N(C2H5)2 которое является эффективным рострегулятором некоторых сельскохозяйственных культур
Изобретение относится к области фторорганических соединений, конкретно к способу получения производных мсиофторметилфосфоновой кислоты следующего строенияQ СТН2- РЯ2 , где R--OR или NR-2; R - низшие алкилы
Производные 2- оксо-3,3,5- триметил-1,2- оксафосфолена-4, обладающие антибластомной активностью // 1769528
Изобретение относится к новым соединениям, обладающим биологической активностью, а именно к производным 1-оксо-3,3,5-триметил-1,2-оксафосфолена-4 общей формулы 1 CH где R - эфирный или амидный заместитель, содержащий гетероциклический фрагмент, включающий в качестве гетероатомов кислород, азот или их комбинацию, например R OCHCH2 NO Указанные соединения обладают выраженной антибластомной активностью
Изобретение относится к химии фосфорорганических соединений, в частности к получению фосфорзамещенных триалкоксиметанов формулы Х2Р(0)С(ОК)з , i где X - R O, R или К г N, R и R - низшие алкилы, которые могут использоваться в качестве комплексообразователей и экстрагентов Пель - упрощение процесса и расширение области его применения
Способ получения тиофосфонуксусных эфиров // 1397454
Изобретение относится к органической химии, конкретно к способу получения N-замещенных алкил-(2-диалкоксифосфорил)алкилимидатов, которые являются новым структурным типом фосфороорганических соединений
Изобретение относится к химии, конкретно к способу получения N-ацилированных алкил-(2-ацетил-2-диалкоксифосфорил)этанимидатов, которые являются новым структурным типом фосфорорганических соединений
Изобретение относится к фосфолипидным производным фосфонокарбоновых кислот формулы I (см
Средство для предпосевной обработки семян // 2178417
Изобретение относится к новым фосфонолипидам карбоновых кислот формулы I и их солям, где R1 обозначает линейный алкил С9-С13, R2 обозначает линейный алкил С8-С12, R3 обозначает водород, линейный алкил С1-С6 или бензил, n = 0-2, m 0-3, которые обладают антивирусной активностью и могут найти применение в медицине
Новые 1н-индол-3-ацетамиды как ингибиторы spla2 и фармацевтическая композиция на их основе // 2162463
Изобретение относится к 1H-индол-3-ацетамидам общей формулы I, где X - кислород; R1 выбирают из групп (i), (iii), где (i) - С6-С20-алкил, С4-С12-циклоалкил; (iii) - (CH2)n-(R80), где n - 1-8 и R80 является группой, указанной в (i); R2 - водород, галоген, С1-С3-алкил, С1-С2-алкилтио, С1-С2-алкокси; из R3 каждый независимо - водород или метил; R4 - R7 каждый независимо - С1-С10-алкил, С2-С10-алкенил, С3-С8-циклоалкил, С1-С10-алкокси, С4-С8-циклоалкокси, фенокси, галоген, гидрокси, карбоксил, -С(O)O(С1-С10-алкил), гидразид, гидразино, NH2, NO2, -C(O)NR82R83, где R82 и R83 независимо - водород, С1-С10-алкил или группа формулы а), где R84 и R85 независимо - водород, С1-С10-алкил; р= 1-5; z - связь, -О-, -NH-; Q - -CON(R82R83), -SO3H, фенил, группа формул б), с), d), где R86 независимо выбирают из водорода, С1-С10-алкила, и их фармацевтически приемлемым солям, или их эфирам, или амидам
Изобретение относится к способу получения фосфоновых соединений формулы I путем реакции фосфита формулы II с соединением, содержащим углерод-углеродную двойную связь, формулы III X-CH=CH-Y где R1 и R2 независимо друг от друга означают фенил или C1-C4-алкил, который может быть замещен одним или несколькими атомами хлора или брома, X означает водород или метил и Y означает -COOR1, -CONH2, -CONHR1 -CONR21 или -C N, где R1 указан выше
Изобретение относится к способу получения N-фосфонометилглицина и его солей, представляющих собой высокоэффективный коммерческий гербицид, полезный для борьбы с огромным разнообразием сорняков