Способ управления технологическим процессом в алюминиевом электролизере
Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия. При управлении технологическим процессом в алюминиевом электролизере измеряют текущие значения силы тока I и напряжения электролизера Uэл. По ним вычисляют приведенное напряжение Uпр и концентрацию глинозема в электролите Сгл. Сравнивают текущие значения Uпр и Сгл с заданными значениями и поддерживают Uпр и Сгл в установленных пределах путем перемещения анода и регулирования количества загружаемого в электролизер глинозема. Текущие значения Uпр и Сгл дополнительно корректируют методами нейросетевого программирования. Проводят компенсацию скачков Uпр, связанных с перемещением анода. Осуществляют фильтрацию Uпр при помощи сглаживающего фильтра. Сглаживающий фильтр создают на основе первой искусственной нейронной сети, обученной посредством выборки предварительно сглаженного приведенного напряжения Uпр. Получают в качестве выходного сигнала фильтрованное напряжение U. Определяют скорость изменения фильтрованного напряжения во времени dU/dt. Преобразуют эту величину в первую производную фильтрованного напряжения dU/dCгл, используя в качестве коэффициента преобразования значение dCгл/dt. Определяют вторую и третью производную напряжения d2U/dCгл 2 и d3U/dCгл 3. Полученные значения первой, второй и третьей производной напряжения U используют в качестве входных сигналов для второй искусственной нейронной сети, обученной посредством аналитических зависимостей между первой, второй и третьей производными напряжения U и концентрацией глинозема в электролите. В качестве выходного сигнала используют значение текущей концентрации глинозема Сгл. Изобретение позволяет повысить технико-экономические показатели процесса электролиза алюминия. 2 з.п.ф-лы, 5 ил., 2 табл.
Изобретение относится к области цветной металлургии, в частности к электролитическому получению алюминия, и может быть использовано в автоматических системах управления технологическим процессом.
Известно, что концентрация глинозема в электролите является одним из важнейших параметров процесса электролиза. От концентрации глинозема в электролите зависят технико-экономические показатели процесса, такие как производительность электролизера и удельный расход электроэнергии. В настоящее время не существует надежных способов автоматического контроля концентрации глинозема в процессе электролиза. В промышленных условиях концентрация глинозема в электролите оценивается технологами приблизительно на основе информации об изменении текущего напряжения на электролизере. Загрузка глинозема в электролит осуществляется либо в результате периодических обработок электролизера напольной техникой, либо подачей в электролит небольших порций глинозема через механизмы автоматизированной подачи глинозема (АПГ). Последний метод является предпочтительным и более эффективным с экономической и экологической точек зрения. Известен способ управления алюминиевыми электролизерами, включающий периодическую обработку корки электролита, измерение напряжения на электролизере и тока серии, расчет сопротивления электролита в междуполюсном пространстве, его среднего значения и концентрации глинозема в электролите по математической модели. Изменение скорости подачи глинозема в электролизер проводят в зависимости от отклонения расчетного значения концентрации от заданного значения (патент RU 2106435 С1, АО "ВАМИ", С 25 С 3/20, 10.03.1998) [1] . Недостаток способа [1] состоит в том, что его невозможно использовать на современных электролизерах, оборудованных механизмами АПГ. Данный способ пригоден только для тех электролизеров, загрузка глинозема в которые осуществляется в результате периодических обработок корки электролита. Наиболее близким по совокупности существенных признаков к предложенному является способ управления технологическим процессом в алюминиевом электролизере. Способ включает измерение текущих значений напряжения и тока электролизера и вычисление по ним приведенного напряжения, скорости изменения последнего во времени и концентрации оксида алюминия в электролизере, сравнение текущих значений этих параметров с заданными значениями, поддержание приведенного напряжения электролизера в заданных пределах перемещением анода и регулированием количества загружаемого в электролизер глинозема путем чередования режимов избыточного и недостаточного питания (патент RU 2113552 С1, ОАО "Братский алюминиевый завод", С 25 С 3/20, 20.06.1998) [2] (ближайший аналог). Способ управления [2] основан на известной зависимости между напряжением электролизера Uэл и концентрацией глинозема в электролите Сгл. При неизменности остальных параметров электролиза любое изменение напряжения будет обусловлено только изменением концентрации глинозема в электролите и, следовательно, по скорости изменения напряжения dUэл/dt можно приблизительно определить Сгл. Недостаток данного способа состоит в том, что зависимость Uэл=f(Cгл) имеет нелинейный характер с минимумом в диапазоне Сгл=3,5-4,5%. Таким образом, в диапазоне высоких концентраций глинозема (больше 4%) рост напряжения электролизера будет свидетельствовать о повышении Сгл, а в диапазоне низких концентраций глинозема (меньше 4%) будет свидетельствовать о снижении Сгл и приближении анодного эффекта. В промышленной практике диапазон низких концентраций обычно называют "левая ветвь концентрационной кривой", а диапазон высоких концентраций - "правая ветвь концентрационной кривой". Производственный опыт показывает, что использование данного способа не всегда дает положительный результат. Для правильного управления технологическим процессом необходимо сначала определить знак ветви концентрационной кривой, на которой в данный момент работает электролизер. Если же ветвь будет определена неверно, то эффект от управляющего воздействия (регулирования количества загружаемого в электролизер глинозема) будет прямо противоположен ожидаемому результату. Задача изобретения состоит в реализации автоматического контроля концентрации глинозема Сгл в расплаве и ее стабилизации на заданном уровне. Технический результат изобретения состоит в повышении технико-экономических показателей процесса электролиза алюминия. Технический результат обеспечивается тем, что способ управления технологическим процессом в алюминиевом электролизере обеспечивается следующими операциями: измеряют текущие значения силы тока I и напряжения электролизера Uэл, вычисляют по ним приведенное напряжение Uпp и концентрацию глинозема в электролите Сгл, сравнивают текущие значения Uпp и Сгл с заданными значениями и поддерживают Uпp и Сгл в установленных пределах путем перемещения анода и регулирования количества загружаемого в электролизер глинозема. Текущие значения Uпp и Сгл дополнительно корректируют методами нейросетевого программирования, для чего проводят компенсацию скачков Uпp, связанных с перемещениями анода, осуществляют фильтрацию Uпp при помощи сглаживающего фильтра, созданного на основе первой искусственной нейронной сети, обученной посредством выборки предварительно сглаженного приведенного напряжения пp, и получают в качестве выходного сигнала фильтрованное напряжение U. Затем определяют скорость изменения фильтрованного напряжения U во времени dU/dt, преобразуют эту величину в первую производную фильтрованного напряжения dU/dCгл, используя в качестве коэффициента преобразования значение dCгл/dt, определяют вторую и третью производные упомянутого напряжения d2U/dCгл 2 и d3U/dCгл 3. При этом полученные значения первой, второй и третьей производной напряжения U используют в качестве входных сигналов для второй искусственной нейронной сети, обученной посредством аналитических зависимостей между первой, второй и третьей производными напряжения U и концентрацией глинозема в электролите, а в качестве выходного сигнала используют значение текущей концентрации глинозема Сгл. Способ может характеризоваться тем, что компенсацию скачков приведенного напряжения Uпp, связанных с перемещением анода, осуществляют путем формирования компенсирующего напряжения



где МДОЗ - масса разовой дозы глинозема, кг;
МДОЗ - суммарное количество доз глинозема, поступающих в электролит за время t;
ТПИТ - текущий интервал питания (уставка АПГ), ч. Расход глинозема в процессе электролиза зависит от производительности электролизера и определяется по формуле:
ФРАСХОД = 1,91





где

k=0,335 - электрохимический эквивалент алюминия, г/(А

I - сила тока серии, кА;
t - время работы электролизера, ч. Таким образом, изменение концентрации глинозема в электролите в течение периода времени t может быть рассчитано по формуле:

где МЭЛ - масса электролита в шахте электролизера, кг. Определение текущей скорости изменения СГЛ во времени реализуется в блоке 16. Используется формула (5), полученная в результате дифференцирования и преобразования формулы (4):
dCГЛ/dt = (MДОЗ/TПИТ-0,64




В данной формуле параметры Мдоз,

dU/dCГЛ=[dU/dt]/[dCГЛ/dt] (6)
Рассчитанная по формуле (6) переменная dU/dCГЛ дифференцируется 2 раза, в результате чего формируются переменные d2U/dCГЛ 2 и d3U/dCГЛ 3. Полученные производные U (первая, вторая и третья) поступают на вход блока 20 определения текущей концентрации глинозема СГЛ, обработка в котором осуществляется посредством второй искусственной нейронной сети. На фиг. 3 приведена структурная схема блока 20. НС-датчик концентрации глинозема представляет собой также, как в случае блока 12, многослойную нейронную сеть, основные характеристики которой приведены в табл. 2. Блок 20 образован второй искусственной нейронной сетью - НС-датчиком 201 концентрации глинозема, связанным с блоком 202 обучения по аналитическим зависимостям первых трех производных. Выход датчика 201 подключен к входу блока 203 оценки достоверности СГЛ. При разработке НС-датчика использовались функции преобразования сигмоидального вида. Структура нейронной сети также может быть реализована на различных типах "нейросетевых симуляторов", таких как Stuttgart Neural Net Simulator v. 4.1, NeuroShell 4.0., Qnet [4]. Для обучения НС-датчика используются аналитические зависимости между первыми тремя производными U и концентрацией глинозема в электролите. Вид этих зависимостей приведен на фиг.4. Использование в алгоритме обработки сигналов трех первых производных U, вместо одной, позволяет значительно повысить точность определения величины СГЛ и исключить ошибки, связанные с неправильным определением знака ветви концентрационной кривой. Блок обучения включает четыре массива данных. К ним относятся один массив заданных значений СГЛ в диапазоне от 1,0 до 7,5%, интервал между которыми составляет 0,01%, и три массива значений переменных dU/dCГЛ, d2U/dCГЛ 2 и d3U/dCГЛ 3, рассчитанных по уравнениям dU/dCГЛ= f(CГЛ), d2U/dCГЛ 2=f(CГЛ) и d3U/dCГЛ 3= f(CГЛ). Рассчитанные значения текущей концентрации глинозема поступают на вход блока 203 оценки достоверности СГЛ. Блок рассчитывает изменение концентрации глинозема за определенный период времени


где (CГЛ)N - текущее значение концентрации глинозема, %;
(СГЛ)N-1 - предыдущее значение концентрации глинозема, %. В том случае, если рассчитанное изменение концентрации глинозема за определенный период времени превышает предельно допустимое значение (



Такой алгоритм позволяет минимизировать погрешность определения Сгл, вызванную случайными флуктуациями U, не связанными с изменением концентрации глинозема в электролите. После этого рассчитанные в блоках 12 и 20 значения параметров UПР и СГЛ сравниваются в блоках 22, 24 с их заданными значениями и поддерживаются блоком 26 в установленных пределах изменением межполюсного расстояния (перемещением анода) и регулированием количества загружаемого в электролизер глинозема путем чередования режимов избыточного и недостаточного питания. Таким образом, исходя из приведенной выше блок-схемы, способ осуществляется в следующей последовательности:
1. Выполняется измерение мгновенных значений силы тока I и напряжения электролизера UЭЛ. 2. Производится вычисление действующего значения этих параметров путем их усреднения за определенный интервал времени ТУС. 3. По формуле (1) выполняется расчет приведенного напряжения электролизера UПР. 4. Рассчитанные значения UПР корректируют с учетом операционных сообщений АСУ ТП для того, чтобы компенсировать скачки приведенного напряжения, вызванные перемещениями анода. 5. Производится фильтрация полученных значений приведенного напряжения при помощи первой искусственной нейронной сети, в результате чего формируется переменная U. 6. Рассчитывается скорость изменения фильтрованного напряжения во времени dU/dt. 7. Определяется средний интервал питания ТПИТ за некоторый промежуток времени. 8. По формуле (5) определяется текущая скорость изменения концентрации глинозема во времени dCГЛ/dt. 9. По формуле (6) выполняется преобразование скорости изменения фильтрованного напряжения во времени dU/dt в переменную dU/dCГЛ. 10. Переменная dU/dCГЛ дифференцируется 2 раза, в результате чего формируются переменные d2U/dCГЛ 2 и d3U/dCГЛ 3. 11. Полученные производные U поступают на вход второй искусственной нейронной сети, обученной на основе известных аналитических зависимостей между первыми тремя производными U и концентрацией глинозема в электролите, которая определяет текущую концентрацию глинозема СГЛ. 12. По формуле (7) определяется изменение концентрации глинозема за определенный период времени




Формула изобретения

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7NF4A Восстановление действия патента Российской Федерации на изобретение
Извещение опубликовано: 20.11.2006 БИ: 32/2006