Способ комбинированного упрочнения поверхностей деталей
Изобретение может быть использовано в различных отраслях машиностроения. Способ включает пластическое деформирование деталей из железоуглеродистых сплавов, что осуществляется инструментом с одновременным пропусканием через зону контакта инструмента с обрабатываемой поверхностью переменного электрического тока. Деформирование поверхностного слоя проводят при перемещении инструмента относительно обрабатываемой поверхности со скоростью и продольной подачей, обеспечивающими необходимое расположение фрагментов белого слоя, и осуществляют химическое или электрохимическое травление неупрочненных зон поверхностного слоя на глубину образования масляных карманов. Изобретение позволяет получить регулярный микрорельеф поверхности с заранее заданными параметрами. 4 ил.
Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для упрочнения поверхностей изделий с целью повышения их износостойкости.
Известен способ упрочнения, при котором с целью создания регулярного микрорельефа используется виброобкатывание поверхности шариками [Авт. свид. 1360976, В 24 В 39/00, БИ 47, 1987]. Однако способ характеризуется низкой износостойкостью обработанной детали, так как поверхность выступов регулярного микрорельефа остается неупрочненной. Известен способ обработки, заключающийся в том, что одновременно и непрерывно проводят электрохимическое стравливание поверхностных слоев и поверхностное пластическое деформирование вибронаклепом с помощью упрочнителя, колеблющегося с ультразвуковой частотой [Авт. свид. 1341225, С 21 D 7/02, БИ 36,1987]. Недостатком данного метода является повышенный износ обработанного изделия, так как окончательное формирование микрорельефа поверхности происходит в процессе приработки. Наиболее близким по техническому уровню является способ упрочняюще-чистовой обработки, при котором поверхность изделия обрабатывают пластическим деформированием выглаживающим инструментом, в качестве которого используется неподвижная твердосплавная пластина или вращающийся твердосплавный ролик, с одновременным пропусканием через зону контакта инструмента с обрабатываемой поверхностью переменного электрического тока [Авт. свид. 759299, В 24 В 39/00, БИ 32, 1980]. Данный способ характеризуется низкой износостойкостью упрочненной поверхности, так как трансформация регулярней структуры в регулярный микрорельеф происходит в процессе эксплуатации детали и сопровождается образованием в зоне трения продуктов износа, выполняющих роль абразивной среды. Таким образом, известные способы упрочнения с образованием регулярных микрорельефов имеют низкий технический уровень, связанный с малой износостойкостью обработанной детали, так как окончательное формирование микрорельефа происходит в процессе приработки при износе неупрочненных участков поверхности. В этой связи важнейшей задачей является создание нового способа упрочнения, обеспечивающего формирование регулярного микрорельефа с заранее заданными параметрами, что позволяет снизить износ поверхности детали в процессе приработки. Техническим результатом является создание нового способа упрочнения поверхностей изделия с целью снижения износа неупрочненных участков поверхности в процессе приработки за счет образования регулярного микрорельефа поверхности с заранее заданными параметрами, что обеспечивает качество упрочнения обрабатываемой поверхности и получение высокой износостойкости упрочненных деталей. Технический результат достигается тем, что способ комбинированного упрочнения поверхностей деталей, при котором пластическое деформирование деталей из железоуглеродистых сплавов осуществляют инструментом с одновременным пропусканием через зону контакта инструмента с обрабатываемой поверхностью переменного электрического тока с образованием фрагментов белого слоя, отличается тем, что пластическое деформирование поверхностного слоя проводят при перемещении инструмента относительно обрабатываемой поверхности со скоростью V и продольной подачей S, после чего осуществляют химическое или электрохимическое травление поверхностного слоя на глубину тр образования масляных карманов, при этом V=2














hтp=(0,4

где hmax - максимальная толщина фрагмента белого слоя. На фиг.1 показана схема формирования упрочненных фрагментов белого слоя, на фиг. 2 - схема регулярной структуры поверхности, на фиг.3 - схема образования масляных карманов. Предлагаемый способ упрочнения реализуется при пропускании электрического тока большой плотности и малого напряжения через зону контакта деформирующего электрод-инструмента с обрабатываемой поверхностью. В результате выделения большого количества джоулева тепла происходит нагрев локального объема до температур 1300-1500 К и последующий быстрый теплоотвод в основной объем материала. Проходящие структурные и фазовые превращения приводят к образованию на поверхности изделия высокопрочной структуры мелкодисперсного мартенсита - белого слоя, отличающегося низкой травимостью и высокой износостойкостью. Каждый из фрагментов белого слоя формируется в течение одного полупериода прохождения электрического тока (фиг.1) за тот промежуток времени, когда мгновенная плотность тока превышает некоторое ее минимальное значение, при котором выделенного в зоне контакта тепла достаточно для протекания фазовых превращений. Размеры фрагмента белого слоя определяются из соотношений (фиг.2)

b=


где

A=0,25

Скорость V и подача S находятся через параметры регулярной структуры
V=(b+














S=a+



где


Kt=


- коэффициент перекрытия в направлении скорости V (


- относительная площадь упрочнения,

- коэффициент перекрытия в направлении продольной подачи S. Затем полученная регулярная структура трансформируется в регулярный микрорельеф за счет химической или электрохимической обработки (фиг.3). При этом упрочненные фрагменты сохраняют свою первоначальную форму и размеры, так как белый слой обладает чрезвычайно низкой химической травимостью, а неупрочненные зоны поверхностного слоя стравливаются на глубину масляных карманов, определяемую из соотношения:
hтp=(0,4

где hтр - глубина масляного кармана; hmax - максимальная толщина белого слоя. Таким образом, химическое (или электрохимическое) травление обеспечивает создание микрорельефа поверхности с заранее заданными параметрами выступов и впадин (масляных карманов), которые остаются неизменными в процессе приработки и эксплуатации детали. Реализация предложенного способа осуществляется следующим образом. Определяют необходимые исходные параметры детали (








Формула изобретения
V=2






S=а

где


коэффициент перекрытия в исходном направлении;



размеры каждого из фрагментов белого слоя,
где R - радиус рабочего профиля инструмента в плане;
Rz - исходная шероховатость упрочняемой поверхности;

hтp=(0,4

где hmax - максимальная толщина фрагмента белого слоя.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4