Роторный гидроударный насос-теплогенератор
Изобретение относится к конструкциям насосов-теплогенераторов, которые могут быть использованы в автономных замкнутых системах теплоснабжения жилых, общественных и промышленных зданий, а также для горячего водоснабжения и нагрева жидкостей в технологических системах. Сущность изобретения в том, что в роторном насосе-теплогенераторе, имеющем полый корпус со всасывающим и нагнетательным патрубками и расположенные внутри корпуса концентрично друг другу ротор и статор, образующие между собой канал, связанный с отверстиями, выполненными в виде сужающихся сопел, в кольцевом канале со стороны ротора и статора установлены перфорированные углубления, внутри которых размещены упругие полые шары, и кольца с выполненными в них отверстиями в виде сужающихся сопел, обращенных внутрь кольцевого канала, а основания патрубков подвода нагреваемой жидкости и отвода расположены в кольцевом канале. Такая конструкция насоса-теплогенератора позволяет установить энергоэкономный режим нагрева жидкости. 4 ил.
Изобретение относится к конструкциям насосов-теплогенераторов, которые могут быть использованы в автономных замкнутых системах теплоснабжения жилых, общественных и промышленных зданий, а также для горячего водоснабжения и нагрева жидкостей в технологических системах Ближайшим технологическим решением является роторный насос-теплогенератор (патент RU 2159901), содержащий полый корпус с всасывающим патрубком для подвода нагреваемой жидкости. Внутри корпуса расположен ротор в виде двухпоточного центробежного колеса с отверстиями по периферии. Концентрично ротору расположен статор с отверстиями. Отверстия в роторе выполнены в виде круглоцилиндрических насадков Вентури, а отверстия в статоре - в виде внезапно расширяющихся насадков.
Недостатками известного устройства является то, что жидкость недостаточно нагревается за один проход через насос-теплогенератор. Для повышения температуры жидкости требуется ее многократное прокачивание через насос-теплогенератор. Технической задачей, на решение которой направлено изобретение, является создание устройства, проходя через которое, обрабатываемая жидкость многократно подвергается факторам воздействия на нее, результатом чего является интенсивный нагрев жидкости за один проход через гидроударный насос-теплогенератор. Поставленная задача решается тем, что в роторном гидроударном насосе-теплогенераторе, имеющем полный корпус со всасывающим патрубком для подвода нагреваемой жидкости и нагнетательным патрубком для отвода нагретой жидкости, и расположенные внутри корпуса концентрично друг другу ротор и статор, образующие между собой канал, связанный с отверстиями, выполненными в виде сужающихся сопел, в кольцевом канале со стороны ротора и статора установлены перфорированные углубления, внутри которых размещены упругие полые шары, и кольца с выполненными в них отверстиями в виде сужающихся сопел, обращенных внутрь кольцевого канала, а основания патрубков подвода нагреваемой жидкости и отвода расположены в кольцевом канале. На фиг 1 изображен разрез роторного гидроударного насоса-теплогенератора, состоящего из следующих основных деталей: 1 - полый корпус; 2 - патрубок для подвода нагреваемой жидкости; 3- патрубок для отвода нагреваемой жидкости; 4 - кольцо статора с отверстиями; 5 - ротор насоса-теплогенератора; 6 - приводной вал; 7 - кольцо ротора с отверстиями; 8 - уплотнительная прокладка статора; 9 - уплотнительная прокладка ротора. На фиг.2 изображен узел I при движении гидропоршня из отверстия ротора в отверстие статора На фиг.3 изображен узел I при движении гидропоршня из отверстия статора в отверстие ротора. На фиг.4 изображен график зависимости величины коэффициента полноты удара




где






R0 можно предполагать, что давления Р могут быть значительно большими, чем при

Локальные повышения температуры в нагреваемой жидкости от перепадов давлений, возникающих от гидравлических ударов и конденсации кавитационных пузырьков, можно определить по формуле:

где V - объем жидкости, см3;

V - объемный вес жидкости, кг/см3;
С - удельная теплоемкость жидкости, ккал/кг

m - механический эквивалент тепла, кг


С - 1,0 ккал/кг

m - 42700 кг см3/ккал;
при Р0 = 10 кг/см2 перепад давлений





Указанный насос-теплогенератор можно применять для отопления и горячего водоснабжения объектов, удаленных от объектов энергоснабжения, а также для нагрева технологических жидкостей. Подобные источники теплоснабжения необходимы в зонах, требующих сохранения чистоты окружающей среды и максимальной безопасности в местах ее выработки (больницы, дома отдыха и т.д.)
Список литературы:
1. В. В. Майер "Кумулятивный эффект в простых опытах". М., 1989 г., с. 44-47, 92-97, 174-177. 2. Л. Бергман "Ультразвук и его применение в науке и технике". Пер. с нем. под ред. B. C. Григорьева. М., "Иностранная литература", 1957 г., с. 504-505. 3. Т.М. Башта "Машиностроительная гидравлика". М., Машиностроение, 1971 г., с. 44-49, 118, 509-512. 4. Р.Р. Чугаев "Гидравлика". М., Энергия,, Ленинградское отд., 1971 г., с. 14-17, 28-33, 64-74, 135-140, 163-167, 276-286, 307-314, 426-436. 5. П.Н. Каменев, А.Н. Сканави, В. Н. Богословский и др. "Отопление и вентиляция". М., Стройиздат, 1975 г., ч. I, с. 294-295. 6. Патент России RU 2159901 Петраков АД., Санников С.Т. Яковлев О.П. "Роторный насос -теплогенератор"к
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4