Способ снижения отрицательного влияния кинематического несоответствия трансмиссии полноприводных машин
Изобретение относится к автотракторному машиностроению. Способ включает изменения кинематического несоответствия между колесами ведущих осей путем изменения давления воздуха в шинах. Изменение кинематического несоответствия осуществляют перераспределением нормальных реакций по ведущим осям, для чего изменяют угол действия силы тяги на крюке посредством создания дополнительного давления масла в полости подъема гидроцилиндра заднего навесного устройства машины. В результате снижается отрицательное влияние кинематического несоответствия трансмиссии полноприводных машин. 11 ил.
Изобретение относится к автотракторному машиностроению, а более конкретно к способам снижения отрицательного влияния кинематического несоответствия в трансмиссии полноприводных машин (автомобилей, тракторов).
Известен способ снижения отрицательного влияния кинематического несоответствия на тягово-сцепные и эксплуатационные показатели полноприводных машин, реализуемый с помощью отключения одной из ведущих осей (Д.А. Чудаков. О тяговой динамике трактора с четырьмя ведущими колесами / Механизация и электрификация социалистического сельского хозяйства. 1957 г., 5, с. 8-18). К недостаткам известного способа снижения отрицательного влияния кинематического несоответствия на тягово-сцепные и эксплуатационные показатели полноприводных машин относится то, что одновременно с устранением отрицательного влияния кинематического несоответствия машина становится неполноприводной. Последнее приводит к снижению тяговых и эксплуатационных показателей машин. Наиболее близким по технической сущности и достигаемому результату является способ снижения отрицательного влияния кинематического несоответствия в трансмиссии полноприводных машин путем изменения кинематического несоответствия заменой (переводом) блокированного привода на дифференциальный, реализуемый с помощью комбинированного (дифференциального с принудительной блокировкой) межосевого привода (Ю.В. Пирковский, канд. техн. наук, Н.Н. Яценко. Влияние конструктивной схемы привода к передним ведущим мостам автомобиля на их тяговые и экономические качества / Автомобильная промышленность. 1963 г., 1, с. 15-19). К недостаткам известного способа относится следующее: во-первых, при дифференциальном приводе машина не может полностью использовать свои тягово-сцепные возможности; во-вторых, усложняется конструкция трансмиссии, повышается ее стоимость, снижается надежность. Технической задачей изобретения является снижение отрицательного влияния кинематического несоответствия в трансмиссии полноприводных машин на их тягово-сцепные и эксплуатационные показатели. Задача достигается изменением давления воздуха в шинах, где согласно изобретению изменение кинематического несоответствия осуществляют перераспределением нормальных реакций по ведущим осям, для чего изменяют угол действия силы тяги на крюке посредством создания дополнительного давления масла в полости подъема гидроцилиндра заднего навесного устройства машины. В отличие от прототипа изменение величины кинематического несоответствия осуществляется с помощью изменения давления воздуха в шинах в зависимости от вида опорной поверхности, а также перераспределения нормальных реакций по ведущим осям за счет изменения статических радиусов колес ведущих осей, величина которых описывается известным выражением (1) (А.Н.Евграфов, В.А.Петрушов. Расчет нормальной жесткости шин для определения их эксплуатационных показателей / Автомобильная промышленность. 1977 г., 3, с. 20-22).







т.к.



При различной окружной скорости колес ведущих осей их поступательные скорости равны:
Vп=Vз
Это явление получило название кинематического несоответствия. Величина кинематического несоответствия определяется следующим выражением.

или

Выравнивание поступательных скоростей колес ведущих осей происходит в результате различной тангенциальной деформации шин:

где rкп и rкз - кинематические радиусы колес ведущих осей;


Мп и Мз - ведущие моменты на колесах осей,
но т.к. rстп



где Pк



где




На фиг.4 представлена графическая зависимость изменения кинематического несоответствия в зависимости от изменения давления воздуха в шинах задней оси трактора К-701, давление воздуха в шинах передней оси фиксировано. Из фиг. 4 видно, что давление воздуха в шинах оказывает существенное влияние на величину кинематического несоответствия при различных значениях крюковой силы. На фиг.1 представлена графическая зависимость изменения кинематического несоответствия от перераспределения нормальных реакций, вызванного изменением угла действия крюковой силы

Изменение кинематического несоответствия производилось в блокированном приводе трактора К-701 фиг.8-10 при движении на следующих фонах: бетонная дорога, проселочная грунтовая дорога, влажный луг. При движении трактора измерялись и регистрировались на ленту осциллографа следующие показатели: вертикальная и горизонтальная составляющие крюковой силы, ведущие моменты на полуосях и частота их вращения, скорость движения и пройденный путь, расход топлива. Изменение давления воздуха производилось в шинах задней оси от 110 до 170 кПа ступенчато (всего 5 ступеней). Перераспределение нормальных реакций по ведущим осям производилось изменением вертикальной и горизонтальной составляющих крюковой силы путем изменения массы балластных грузов в полуприцепе и прицепе агрегатируемых трактором. На фиг.8-11 представлены осциллограммы, подтверждающие влияние давления воздуха в шинах и нормальных реакций на колесах ведущих осей на перераспределение ведущих моментов, где M1 и М2 - ведущие моменты на колесах передней оси;
"0"M1 и "0"М2 - нулевые линии моментов;
М3 и M4 - ведущие моменты на колесах задней оси;
"0"М3 и "0"M4 - нулевые линии моментов;
Rkp - вертикальная составляющая крюковой силы;
"0"Rкp - нулевая линия вертикальной составляющей крюковой силы;
Ркр - горизонтальная составляющая крюковой силы;
"0"Ркр - нулевая линия горизонтальной составляющей крюковой силы;
(+) - положительное значение замеряемой величины;
(-) - отрицательное значение замеряемой величины. Фиг.8 получена при следующих значениях:
Ркр=6,44 кН; Rкр=20,3 кН; Рвнз=110 кПа;
Rп=80,8 кН; Rз=74,4 кН. Ведущий момент на колесах передней оси составил 11,268 кН, задней оси - 0,34 кН. Фиг. 9, 10 получены при тех же значениях Ркр; Rкp; Rп и Rз, но при давлении воздуха в шинах 150 и 170 кПа. Ведущие моменты на колесах передней оси составили: 5,01 кНм и 3,53 кНм соответственно, на колесах задней оси - 3,049 кНм и 5,305 кНм соответственно. Фиг.14 получена при Ркр=4,31 кН; Rкp=12,37 кН; Rп= 84,0 кН; Rз=63,3 кН, с Рвн=150 кПа, ведущий момент на колесах передней оси равен 2,6 кНм, задней - 5,2 кНм. Технико-экономические преимущества предлагаемого способа. Реализация предлагаемого способа позволяет, в зависимости от вида опорной поверхности и выполняемой работы, повысить тягово-сцепные свойства машины на 10-25% и снизить расход топлива на 8-15%.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11