Способ получения азотной кислоты
Изобретение относится к области технологии получения неконцентрированной азотной кислоты и может быть использовано в производствах концентрированной азотной кислоты, нитрит-нитратных солей и калийных удобрений. Способ получения азотной кислоты включает стадии окисления аммиака, подготовки и переработки нитрозного газа, в том числе абсорбцию, при этом подготовку и переработку нитрозного газа осуществляют, применяя дополнительное окисление оксида азота (II) в оксид азота (IV) раствором азотной кислоты промежуточной концентрации с одновременным обогащением нитрозного газа оксидом азота (IV) при определенной температуре до выделения реакционной влаги из нитрозного газа и проводя процесс абсорбции в присутствии раствора десорбированной и раскисленной азотной кислоты. Способ позволяет эффективно использовать низкопотенциальную энергию нитрозного газа, повысить содержание оксида азота в нитрозном газе перед абсорбционной колонной, улучшить экономичность процесса в целом при улучшении и сохранении основных технологических показателей процесса на известном уровне. 2 з.п.ф-лы, 1 ил.
Изобретение относится к технологии получения неконцентрированной азотной кислоты и может быть использовано также в производствах концентрированной азотной кислоты, нитрит-нитратных солей и калийных удобрений.
Известен способ получения азотной кислоты, включающий каталитическое окисление аммиака кислородом воздуха в оксид азота (II) с образованием нитрозного газа, гомогенное окисление оксида азота (II) в оксид азота (IV) кислородом воздуха, охлаждение нитрозного газа до 160-180oС с достижением степени окисленности (в частях единицы), равной 0,85-0,88, конденсацию реакционной влаги из нитрозного газа с охлаждением газа до 40-50oС, доокисление оксида азота (II) нитрозного газа кислородом дополнительного воздуха с достижением перед абсорбционной колонной содержания оксидов азота (NO2 и NO) в нитрозном газе, равного 6,0-6,5 об.%, и степени окисленности 0,75
- недостаточное использование тепловой энергии нитрозного газа, часть которой теряют, отводя в водооборотный цикл с расходуемой охлаждающей водой. Кроме того, потенциальной тепловой энергии нитрозного газа с температурой 60-80oС недостаточно для раскисления более чем 100 кг/т моногидрата азотной кислоты по эндотермической реакции (3) и повышения содержания оксидов азота в нитрозном газе более чем на 8 об.%. Задачей, на решение которой направлено изобретение, является повышение экономичности способа получения азотной кислоты путем осуществления дополнительного жидкостного окисления оксида азота (II) в оксид азота (IV) до начала интенсивного выделения реакционной влаги из нитрозного газа при определенной температуре за счет использования тепловой энергии нитрозного газа и осуществления абсорбции оксидов азота в присутствии десорбированной и раскисленной до 10-30 мас.% азотной кислоты, что дает возможность уменьшить материальные и энергетические затраты производства за счет:
- сокращения количества единиц оборудования в технологической схеме процесса (реактор каталитического окисления оксида азота (II) в оксид азота (IV), насосы для циркуляционного контура продукционной кислоты),
- экономии материалов (катализатор, охлаждающая вода) и эффективного использования низкопотенциальной тепловой энергии нитрозного газа,
- при этом повышают содержание оксидов азота перед абсорбционной колонной и обеспечивают сохранение на известном уровне концентрации продукционной азотной кислоты и содержания оксидов азота в "хвостовых" газах после абсорбционной колонны. Заявляемый способ имеет следующие существенные признаки:
- дополнительное окисление оксида азота (II) в оксид азота (IV) осуществляют азотной кислотой с одновременным обогащением нитрозного газа оксидом азота (IV) до начала интенсивного выделения реакционной влаги из нитрозного газа;
- жидкостное окисление оксида азота (II) азотной кислотой и ее одновременное раскисление осуществляют при температуре 90-120oС за счет использования тепловой энергии нитрозного газа;
- абсорбцию оксидов азота осуществляют в присутствии десорбированной и раскисленной до 10-30 мас. % азотной кислоты, образующейся после дополнительного окисления;
- дополнительное окисление оксида азота (II) в оксид азота (IV) осуществляют азотной кислотой, образующейся на стадии конденсации реакционной влаги. Жидкостное окисление оксида азота (II) указанной азотной кислотой в указанных выше условиях (температура 90-120oС) приводит к резкому ускорению реакции (3). При этом повышается содержание оксидов азота в нитрозном газе перед абсорбционной колонной до 8,5-9,5 об.%, степень окисленности газа 0,93-0,95, а содержание азотной кислоты уменьшается до 10-30 мас.% (она раскисляется). Жидкостное окисление оксида азота (II) азотной кислотой по реакции (3) осуществляют в предконденсаторе (он же окислитель), обычном насадочном аппарате, при непосредственном контактировании горячего малоокисленного нитрозного газа и раствора 40-50%-ной кислоты, образующейся на стадии конденсации реакционной влаги в холодильнике-конденсаторе. Совокупность технологических приемов позволяет получить неожиданный эффект - достичь высокой степени обогащения нитрозного газа оксидом азота (IV) при температуре, отвечающей точке росы этого газа - 90-120oС. Дальнейшее выделение реакционной влаги из нитрозного газа, поступающего при температуре 90-120oС на охлаждение в холодильник-конденсатор, осуществляют в условиях скоростной конденсации влаги и пониженной скорости кислотообразования. Кроме вышеуказанного окисления в предконденсаторе нитрозный газ обогащается оксидами азота (NO и NO2) благодаря их десорбции из 40-50%-ного раствора азотной кислоты от контактирования его с горячим нитрозным газом. Десорбированный и раскисленный раствор азотной кислоты содержит 10-30 мас.% HNО3, его направляют в абсорбционную колонну. Заявляемый способ обеспечивает:
- получение повышенного содержания оксидов азота в нитрозном газе перед абсорбционной колонной (8,5-9,5%, по прототипу - 7,5-8,0%);
- достижение основных технологических показателей способа на известном уровне: степени окисленности нитрозного газа перед абсорбционной колонной (0,93-0,95), концентрации азотной кислоты до 70 мас.% (по прототипу 50-70 мас. %) и содержания оксидов азота в "хвостовых" газах после абсорбционной колонны до 0,08 об.% при условии одновременного получения азотной кислоты повышенной концентрации. При этом уменьшаются материальные и энергетические затраты производства за счет устранения из технологической схемы циркуляционного контура продукционной азотной кислоты и реактора каталитического окисления оксида азота (II) с катализатором, улучшается экономичность процесса в целом. Сравнение заявляемого технического решения с прототипом показывает, что предложенный способ отличается новым порядком технологических операций и приемами, позволяющими вести процесс в ином аппарате и в условиях, отличающихся от условий ведения процесса по известному способу. Таким образом, заявляемый способ отвечает критерию "новизна". Заявляемое техническое решение иллюстрируют принципиальная технологическая схема получения азотной кислоты и пример, подтверждающий промышленную применимость технического решения. На чертеже схематически изображен узел подготовки и переработки нитрозного газа в производстве азотной кислоты в аппаратах:
1 - предконденсатор;
2 - холодильник - конденсатор;
3 - абсорбционная колонна;
4 - продувочная колонна. Заявляемый способ осуществляют следующим образом (см. чертеж): малоокисленный нитрозный газ (ГН) со степенью окисленности 0,65-0,75 и температурой 160-170oС направляют в нижнюю часть предконденсатора 1, в который сверху самотеком поступает из холодильника-конденсатора 2 раствор Р1, содержащий 40-50 мас. % азотной кислоты. В предконденсаторе 1 осуществляют охлаждение нитрозного газа до точки росы 90-120oС и восстановление азотной кислоты в оксид азота (IV) за счет использования тепловой энергии нитрозного газа при условии прямого контактирования горячего газа с раствором 40-50%-ной азотной кислоты. Нитрозный газ (ГН) из предконденсатора I с температурой 90-120oС направляют в холодильник-конденсатор 2, где осуществляют его смешивание с дополнительным воздухом 6 и отдутыми оксидами азота из продувочной колонны 4, а остаточное охлаждение нитрозного газа (ГН) до 40-50oС с образованием раствора, содержащего 40-50 мас.% азотной кислоты. Этот раствор после десорбции и раскисления в предконденсаторе 1 направляют в абсорбционную колонну 3. Нитрозный газ (ГН) после холодильника-конденсатора 2, содержащий 8,5-9,5 об.% оксидов азота, с температурой 40-50oС и степенью окисленности 0,93-0,95 тоже направляют в абсорбционную колонну 3. Вследствие противоточного взаимодействия нитрозного газа (ГН) и абсорбента - конденсата водяного пара (КВП) в присутствии раскисленного и десорбированного водного раствора Р2, содержащего 10 - 30% азотной кислоты, в колонне 3 образуется продукционная азотная кислота концентрацией до 70 мас.%, при этом "хвостовые" газы (ГХ) содержат до 0,08 об.% остаточных оксидов азота. Продукционную азотную кислоту направляют в продувочную колонну 4, где осуществляют десорбцию растворенных в азотной кислоте оксидов азота воздухом, и далее - на склад готовой продукции. Предложенный способ поясняется примером. Пример. Нитрозный газ в количестве 3790 м3/т, содержащий 360 м3/т (или 9,5 об. %) оксидов азота со степенью окисленности 0,72 (температура 170oС, давление 0,7 МПа) подают в нижнюю часть предконденсатора 1. В верхнюю его часть подают 400 кг/т азотной кислоты (моногидрата) в виде водного раствора, который содержит 48 мас.% азотной кислоты. Вследствие этого при температуре 105oС, соответствующей точке росы для приведенных параметров нитрозного газа и являющейся саморегулируемой величиной, идет интенсивное окисление азотной кислотой оксида азота (II) в оксид азота (IV) с обогащением нитрозного газа до 460 м3 /т (или 13,5 об.%) оксидов азота, увеличением степени окисленности до 0,94 и раскислением водного раствора азотной кислоты до 25 мас.%. На дальнейшей стадии скоростной конденсации реакционной влаги в холодильнике-конденсаторе 2 с введением дополнительного воздуха в количестве 600 м3/т идет частичная потеря оксида азота (IV) с образующимся раствором, содержащим 48 маc. % азотной кислоты. Нитрозный газ из холодильника-конденсатора 2 поступает в абсорбционную колонну 3 в количестве 3400 м3/т. Он содержит 310 м3/т (или 9,1 об. %) оксидов азота. Раскисленный и десорбированный водный раствор, содержащий 25 мас.% азотной кислоты, из предконденсатора 1 самотеком поступает в куб абсорбционной колонны 3. Нитрозный газ взаимодействует с конденсатом водяного пара в абсорбционной колонне 3 с образованием продукционной азотной кислоты концентрации 70 мас.% и содержанием оксидов азота в "хвостовых" газах после абсорбционной колонны 0,08 об.%. Как видно из примера, предлагаемый способ получения азотной кислоты обеспечивает увеличение содержания оксидов азота в нитрозном газе перед абсорбционной колонной и сохранение на известном уровне таких технологических показателей, как степень окисленности нитрозного газа перед абсорбционной колонной, концентрации продукционной азотной кислоты и одновременно с этим содержания оксидов азота в "хвостовых" газах после абсорбционной колонны. Предлагаемый способ применен в условиях опытно-промышленных испытаний на агрегате производства азотной кислоты УКЛ-7. Ожидаемый годовой экономический эффект от внедрения предлагаемого способа на одном агрегате УКЛ составляет 50 тыс. долл. США.
Формула изобретения
РИСУНКИ
Рисунок 1NF4A Восстановление действия патента
Дата, с которой действие патента восстановлено: 10.11.2011
Дата публикации: 10.11.2011