Рекомбинантная плазмидная днк pu27hhv6, обеспечивающая экспрессию гена u27 герпесвируса человека 6-го типа, кодирующего белок p41, в клетках бактерий escherichia coli
Изобретение относится к биотехнологии, в частности к генетической инженерии. Предложенная рекомбинантная плазмидная ДНК pU27HHV6 получена на основе плазмидной ДНК pUR290. Плазмидная ДНК pU27HHV6 содержит фрагмент гена U27 герпесвируса человека 6-го типа, кодирующего белок р41. Конструкция обеспечивает уровень синтеза целевого антигена 40-50%, с выходом очищенного продукта после аффинной хроматографии до 98-99% от суммарных клеточных белков. Полученный рекомбинантный белок показывает высокий уровень чувствительности и специфичности в ИФА для выявления специфичных к ВГЧ-6 иммуноглобулинов в крови человека. 4 ил.
Изобретение относится к биотехнологии, в частности к генной инженерии, и представляет собой сконструированную "in vitro" рекомбинантную плазмидную ДНК, содержащую фрагмент гена U27 герпесвируса человека 6 типа (ВГЧ-6), кодирующий белок р41. Конструкция обеспечивает эффективный биосинтез полипептида в клетках Е. coli белка р41 ВГЧ-6, слитого с фрагментом -галактозидазы с гистидиновым трактом (6*His) на С-конце. Использование очищенного с помощью аффинной хроматографии рекомбинантного белка в иммуноферментном анализе для выявления специфичных к ВГЧ-6 иммуноглобулинов в крови пациентов показывает высокий уровень чувствительности и специфичности. Таким образом, этот рекомбинантный белок может быть использован в качестве антигена ВГЧ-6 для научно-исследовательских работ и серологического тестирования ВГЧ-6 в клинической практике.



- уникальные сайты узнавания рестрикционными эндонуклеазами, имеющие следующие координаты:
EcoRI (GAATTC) - 2514 п.о, SalI (GTCGAC) - 2452 п.о. Существенными преимуществами предложенной плазмидной конструкции является наличие экспрессируемого гена U27, кодирующего белок р41 ВГЧ-6, наличие в С-концевой области полигистидинового тракта, что в совокупности обеспечивает уровень синтеза целевого антигена 40-50%, с выходом очищенного продукта после аффинной хроматографии до 98-99% от суммарных клеточных белков. Перечень графических материалов. Фиг.1. Физическая карта рекомбинантной плазмиды pU27HHV-6. Фиг. 2. Аминокислотные последовательности белка р41 для основных штаммов вируса герпеса 6 типа, выровненные по алгоритму CLUSTAL. Фиг.3. Нуклеотидная последовательность гена U27 и кодируемая им аминокислотная последовательность белка р41 HVV-6. Подчеркиванием выделены триплеты нуклеотидов и кодируемые ими аминокислоты, не относящиеся к белку р41. Черным цветом выделены триплеты нуклеотидов и кодируемые ими 6 молекул гистидина, входящие в состав полигистидинового тракта. Фиг.4. Электрофореграмма лизатов клеток E.coli (штамм ВМН)
Дорожка 1: клеточный лизат бактериального штамма-продуцента. Дорожка 2: хроматографически очищенный рекомбинантный белок р41. Дорожка 3: контроль бактериальных белков - клеточный лизат E.coli. Дорожки 4: маркер белковых весов (Sigma). Изобретение иллюстрируется следующими примерами. Пример 1. Конструирование промежуточной плазмидной ДНК pUR290-6*his, кодирующей последовательность из 6-ти гистидинов после сайта узнавания энлонуклеазой рестрикции SalI. 10 мкг плазмидной ДНК pUR290 [9] обрабатывают последовательно эндонуклеазой рестрикции HindIII, фрагментом Кленова и SalI и сшивают с синтетическим адаптером длинной 50 пар нуклеотидов, обработанным последовательно эндонуклеазой рестрикции KpnI, фрагментом Кленова и SalI (см. последовательность 1 в конце описания) в лигазной реакции в 20 мкл лигазного буфера. 10 мкл лигазной смеси используют для трансформации компетентных клеток E. coli TG-1 [8]. Трансформанты высевают на LB-агар, содержащий 100 мкг/мл. Из выросших за 1 сутки колоний клонов выделяют плазмидную ДНК. ДНК каждого клона проверяют на присутствие вставки 116 п.н., обрабатывая эндонуклеазой рестрикции EcoRI, и на отсутствие сайта эндонуклеазы рестрикции PstI. Отбирают клон, плазмидная ДНК которого содержит последовательность синтетического адаптера. Пример 2. Конструирование рекомбинантной плазмидной ДНК pU27HHV6. 10 мкг плазмидной ДНК pUR290-6*his обрабатывают рестриктазами BamHI и SalI в соответствии с методикой, описанной в работе [7, 10], и из полученного гидролизата выделяют в 4% полиакриламидном геле векторный фрагмент длиной 5,34 тыс. п.о. Проводят полимеразную цепную реакцию (ПЦР) с суммарной ДНК, выделенной из культуры клеток МТ-4, которая была заражена герпесвирусом человека 6 типа, штамм Z29, в соответствии с методикой, описанной в работе [3]. 10 мкг ДНК из реакционной смеси после проведения ПЦР обрабатывают рестриктазами BamHI и SalI и из полученного гидролизата выделяют в 4% полиакриламидном геле фрагмент длиной 1,125 тыс. п.о. Полученный фрагмент и векторную часть плазмиды pUR290-6*his сшивают при помощи лигазной реакции в 30 мкл буфера для лигирования. 10-20 мкл реакционной смеси используют для трансформации компетентных клеток E.coli TG-1 [8] . Трансформанты высевают на LB-агар, содержащий 100 мкг/мл ампициллина. Из выросших клонов выделяют плазмидную ДНК и анализируют ее путем обработки набором эндонуклеаз рестрикции Hpal, BamHI и SalI с последующим электрофоретическим анализом длин рестрикционных фрагментов в 4% полиакриламидном геле. Из 12 проанализированных клонов 2 показали нужный набор рестрикционных фрагментов. Далее полученную плазмидную ДНК последовательно обрабатывают рестриктазами EcoRV и BamHI. Из полученного гидролизата выделяют в 4% полиакриламидном геле векторный фрагмент длиной 4525 п.о. Достраивают концы выделенного векторного фрагмента с помощью фрагмента Кленова ДНК-полимеразы I и сшивают при помощи лигазной реакции в 30 мкл буфера для лигирования. 10-20 мкл реакционной смеси используют для трансформации компетентных клеток E.coli TG-1. Трансформанты высевают на LB-агар, содержащий 100 мкг/мл ампициллина. Из выросших клонов выделяют плазмидную ДНК pU27HHV6 и анализируют ее путем обработки эндонуклеазой рестрикции EcoRI с последующим электрофоретическим анализом длин рестрикционных фрагментов в 4% полиакриламидном геле. Целевая плазмида pU27HHV6 (фиг.1) содержит уникальные сайты узнавания рестрикционными эндонуклеазами, имеющие следующие координаты:
EcoRI-2514; SalI-2452. Окончательную структуру рекомбинантной ДНК pU27HHV6 подтверждают определением нуклеотидной последовательности в районе встроенного фрагмента гена U27HHV6 (фиг.2). Пример 3. Экспрессия рекомбинантного антигена. Экспрессию целевого гена U27 HHV6 проверяют по наличию рекомбинантного белка 82, 46 килодальтон, выделяемого с помощью аффинной хроматографии на Ni-NTA-resin, после индукции IPTG клеток E.coli TG-1, трансформированных целевой плазмидой pU27HHV6 (фиг.4, дорожка 3). Таким образом, заявляемое техническое решение позволяет получить экспрессирующую плазмидную ДНК pU27HHV6, кодирующую ген U27 ВГЧ-6. Трансформированная этой плазмидой культура клеток E.coli TG-1 при индукции IPTG осуществляет биосинтез полипептида размером 82, 46 килодальтон, состоящего из фрагмента

1. Nicholas M. and Martin M. E. D. Nucleotide Sequence Analysis of a 38.5 - Kilobase - of the Genome of Human Herpesvirus 6 Encoding Human Cytomegalovirus Immediate -Early Gene Homologs and Transactivating Functions // J Virol, 1994, N2, p. 597-610. 2. Yizhou. et al. trans - Activation of the HIV Promoter by a cDNA and Its Genomic Clones of Human Herpesvirus - 6 Virology 199, N2, 1994. 3. Chang С.К. and N. Balachandran. Identification, Characterisation and Sequence Analysis of a cDNA Encoding a Phosphoprotein of Human Herpesvirus 6 J Virol. 65 7085, 1994. 4. Compels U. A. et al. The DNA Sequence of Human Herpesvirus 6: Structure, Coding Content, and Genome Evolution Virology 209, N 1, p. 29-51, 1995. 5. Patnaik M. et al. Prevalence of IgM Antibodies to, Human Herpesvirus 6 Early Antigen. (p 41/38) in Patients with Chronic Fatigue Syndrome The J of Infect. Dis. 1995, 172, p. 1364-1367. 6. Ablashi D.V. et al. Human Herpesvirus 6 (HHV-6) Infection in Multiple Sclerosis: a preliminary report. Mult. Scler. 1998 Dec.4: 490-496. 7. Новое в клонировании ДНК. Методы. Под редакцией Д. Гловера. // M.: Мир, 1989, С.140-141. 8. Маниатис Т., Фрич, Сэмбук Дж. (1984) Молекулярное клонирование. Пер. с англ., M.: Мир. 9. Ruther U., Muller-Hill B. EMBO J., 2, 1791 (1983). 10. PCR. A Practical Approach (Eds M. J. McPherson, P. Quirke, G.R. Taylor.- Oxford, 1991).
Формула изобретения

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7