Способ получения радиопоглощающего покрытия
Изобретение относится к способам получения радиопоглощающих материалов и предназначено для применения в виде покрытия, которое наносится на изделия медицинского, исследовательского, бытового и др. назначения. Способ заключается в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя, причем по крайней мере в один из слоев поглощающего покрытия перед сушкой помещают разрезные кольца из электропроводного материала с различным диаметром. Технической задачей является получение покрытия меньшей толщины и с большим поглощением в более широком диапазоне длин волн. 2 табл., 1 ил.
Предлагаемое изобретение относится к материалам, поглощающим радиоизлучение, и предназначено для применения в виде покрытия, которое наносится на изделие исследовательского медицинского, бытового и др. назначения.
Известны различные способы изготовления материалов и покрытий для поглощения радиоизлучения. По одному из способов [Ю.К.Ковнеристый, И.Ю.Лазарева. А.А.Раваев. Материалы, поглощающие СВЧ-излучение. Наука, М., 1982 г., с. 85] из графита, керметов и т.п. материалов изготавливают геометрические фигуры (например, цилиндры, конусы) различных размеров и закрепляют их на поверхности в определенном порядке. Недостатком такого способа является большой объем и масса поглощающих устройств. Их обычно применяют для поглощения излучения внутри помещения, закрепляя их на стенках и потолках. По другому способу [Я.А.Шнейдерман, Зарубежная радиоэлектроника, 1972, 7, 1975, 3] вначале изготавливают тканые или пленочные материалы с использованием металлической сетки и закрепляют материал на поверхности. Этот способ применяется, в основном, для экранирования каких-либо поверхностей и для защиты биологических объектов. Недостатком этого способа является большая доля отраженного излучения. Известен также способ [Ю.К.Ковнеристый, И.Ю.Лазарева, А.А.Раваев. Материалы, поглощающие СВЧ-излучение. Наука, М., 1982 г., с.46, 88], по которому в жидкое полимерное связующее или его раствор вводят дисперсный поглощающий наполнитель (графит, феррит, сегнетоэлектрики, металлические сплавы типа "альсифер" т.п.), а затем полученный жидкий материал наносят на защищаемую металлическую поверхность. Наиболее близким к предлагаемому способу и принятому в качестве прототипа является способ, при котором получают вначале жидкий материал при смешении синтетического клея "Элатон" и порошкообразного феррита или железа, который затем наносят на защищаемую поверхность в несколько слоев с промежуточной сушкой между слоями [патент РФ 2107705, кл. С 09 D 5/32, 1996]. Недостатком указанного способа получения радиопоглощающего покрытия является низкое поглощение в тонких слоях, необходимость нанесения большой толщины покрытия для получения высокого поглощения в диапазоне длин волн более 2 мм. В частности, для длины волны 3 см толщина покрытия должна быть не менее 1 мм. Высокое поглощение в сочетании с низкой толщиной покрытия является важным при применении покрытий в объектах, где массогабаритные характеристики являются первостепенными. В частности, к таким объектам относятся летательные аппараты, микроэлектронные СВЧ устройства. Поглощающие покрытия большой толщины утяжеляют конструкции летательных аппаратов, ухудшают их аэродинамику, разрушаются при высоких скоростях полета и вибрации конструкции. В микроэлектронных устройствах такие покрытия увеличивают их габариты в несколько раз. Предлагаемое изобретение направлено на получение радиопоглощающего покрытия, которое имело бы достаточно высокое поглощение при толщинах менее 1 мм в широком диапазоне длин волн (от долей мм до 2-3 десятков см). Указанный технический результат достигается тем, что в известном способе получения радиопоглощающего покрытия, заключающемся в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя, по крайней мере в один из слоев поглощающего покрытия перед сушкой помещают разрезные кольца из электропроводного материала толщиной более скин-слоя, с различным диаметром D, удовлетворяющим условию:







H2n = H1e(

H2n



где

t - время, с;
n - целое число (0, 1, 2, ...). Нечетные номера соответствуют кольцам диаметром D1, a четные - кольцам, диаметр которых D2. Такая среда содержит собственные осцилляторы и имеет дисперсионное уравнение четвертой степени. В этом случае получается уже два спектра частот, которые лежат в более высоком и более низком диапазонах частот. Следовательно, общий спектр существенно расширяется по сравнению с первым случаем. Для снижения отражения падающей электромагнитной энергии кольца необходимо делать разрезными. Тогда наведенная в них энергия будет частично переизлучаться в зазоре и поглощаться в слое покрытия. Несмотря на довольно широкий спектр собственных частот, резонатор реально взаимодействует только с частотами первых гармоник. Чтобы расширить спектр поглощения, необходимо применять кольца разного диаметра. Они могут располагаться в одной плоскости (например, концентрически одно в другом) либо в разных плоскостях. Зазор в кольцах и расстояние между ними должны быть такие, чтобы в результате пробоя или туннельного эффекта не образовалось сплошной электропроводной сетки на поверхности, которая в таком случае будет работать уже как отражатель (см. , например, "Электродинамика сетчатых структур", Конторович М.И., Астрахан М.И. и др., Радио и связь, 1987 г.). Поэтому зазор в кольце и расстояние между ними выбирают в пределах 0,1-0,5 мм. В то же время, если увеличивается расстояние между кольцами, то это снижает концентрацию колец на единицу площади и, как следствие, снижается количество поглощенной энергии. Толщина скин-слоя d электропроводного материала определяется по формуле

где


с - электрическая постоянная, равная скорости света в вакууме;



рассчитывают собственные частоты объемного резонатора fmin в зависимости от его диаметра D. Значения собственных частот f1n min открытого объемного резонатора в зависимости от его диаметра D представлены в табл.1. На оправки из нержавеющей стали диаметром D1 = 10 мм и D2 = 3 мм наматывают виток к витку константановую проволоку диаметром 0,2 мм и разрезают по образующей тонкой фрезой или ножницами. Первый образец оставляют без изменения. На поверхность второго и третьего образцов помещают и закрепляют кольца диаметром D1 = 10 мм, с зазором 0,2 мм, на расстоянии между кольцами 0,2 мм. Затем на поверхность третьего образца дополнительно помещают кольца диаметром D2 = 3 мм и зазором 0,2 мм, располагая их концентрически в кольцах с диаметром D1 = 10 мм. После этого наносят слой поглощающего покрытия толщиной 0,5 мм на поверхность трех образцов. После сушки производят измерение поглощения образцов в открытом пространстве, применяя излучающий и приемный рупоры, согласованные по размерам с частотой электромагнитного излучения. Результаты измерения для различных образцов приведены в табл. 2. Из табл. 2 следует, что применение колец одного диаметра, помещенных в слой поглощающего покрытия, увеличивает поглощение в несколько раз (пункт 2 таблицы) по сравнению с покрытием без колец (пункт 1 таблицы), а введение в слой поглощающего покрытия колец разного диаметра (пункт 3 таблицы) не только увеличивает поглощение, но и расширяет диапазон длин волн, который поглощает покрытие. С увеличением длины волны при постоянной мощности излучения должна наблюдаться тенденция снижения поглощения при прочих равных условиях, т. к. поглощенный квант энергии hf (h - постоянная Планка, f - частота излучения) с уменьшением частоты уменьшается и для поглощения той же мощности излучения в длинноволновой области требуется большее количество резонаторов, чем для коротковолновой области. Поэтому в табл.2 поглощенная мощность уменьшается при увеличении длин волн. Для диаметра D=10 мм поглощенная мощность уменьшается и в коротковолновой области (

Формула изобретения

где С - скорость света;

fmin - минимальная частота поглощаемого излучения;


при этом величина зазора в каждом из колец и минимальное расстояние между кольцами выбраны так, чтобы при данной мощности излучения не было короткого замыкания в зазоре и между кольцами, и равны 0,1

РИСУНКИ
Рисунок 1, Рисунок 2