Устройство для пережатия металлических трубопроводов
Изобретение относится к конструкции ручного переносного инструмента для пережатия металлических трубопроводов и может применяться для устранения аварийных ситуаций, проведения ремонтных и других работ в пневматических и гидравлических контурах космических аппаратов в открытом космосе. Устройство для пережатия металлических трубопроводов содержит корпус, силовую скобу с матрицей и пуансоном, связанными с силовым приводом, силовая скоба выполнена в виде отделяемой головки, связанной с корпусом резьбой, и снабжена втулкой для стопорения штока пуансона. Рабочие кромки матрицы и пуансона имеют ограничители остаточной деформации трубопровода в виде плоских обнижений. Силовой привод выполнен в виде набора колец из материала с эффектом памяти формы с установленным на теплопроводящей пасте внутри него электронагревателем и с теплоизоляцией в виде шайб и трубы из термостойкого высокопрочного материала. Технический результат - возможность безопасной работы оператора в скафандре в труднодоступных местах, визуального контроля операции пережатия трубопровода, а также обеспечение требуемой герметичности и необходимой прочности пережатого участка трубопровода, уменьшение габаритов и массы устройства и минимальное потребление энергии. 9 ил.
Изобретение относится к конструкциям ручного переносного инструмента для пережатия металлических трубопроводов, применяемого для устранения аварийных ситуаций, проведения ремонтных работ и функциональных изменений в пневматических и гидравлических контурах космических аппаратов в открытом Космосе.
Известны механические устройства в виде тисков и регулируемых зажимов рычажного, штангового, клинового, эксцентрикового и прочих типов, успешно используемые для фиксации и пережатия труб из сравнительно эластичных полимерных материалов, резины, меди и некоторых марок алюминия. Примером может служить патент США 4046363, МКИ В 25 В 1/14, принятый за аналог, по которому пережатие трубопровода производится двумя рычагами с общей точкой вращения одних концов со сведением других рукояткой с поворотным нажимным роликом, подвижно установленной на одном из рычагов. Очевидным общим недостатком такого типа устройств и аналога, в частности, является недостаточность развиваемых ими усилий для пережатия трубопроводов из традиционных для КА высокопрочного алюминия и нержавеющей стали или необходимость предварительного подогрева обжимаемых участков трубопроводов до относительно высоких температур, что чаше всего либо недопустимо по требованиям безопасности, либо очень сложно. Наиболее близким по технической сущности к предложенному устройству, принятым за прототип, является механизм для обжатия и резки труб малого диаметра МРТ-1, представленный в руководящем материале НИАТ N 70103.007, 1965 г. (см. фиг. 1). Прототип представляет собой устройство с пневмогидравлическим приводом. Пневмоцилиндр низкого давления 1, управляемый золотником 2, штоком малого диаметра 10, связанным с поршнем 9, перемещает жидкость в преобразователе давления 3, которая вентильным блоком 4 по рукавам высокого давления 12 поочередно подается в силовые гидроцилиндры 5 левой скобы 6 при обжатии трубопровода или правой скобы 6 при его обрезке. При отсутствии давления в гидроцилиндре возвратная пружина 11 устанавливает пуансон в исходное положение. Обжатие производится на неподвижной матрице 7, закрепленной на скобе 6, подвижным пуансоном 8, а резка - подвижным пуансоном-ножом 13. Передаваемое на скобу 6 усилие достигает 5-7 т, что вполне достаточно для надежного пережатия трубопровода, но при полном снятии пережимного усилия герметичность пережатого участка не гарантируется. Поэтому после пережатия трубопровод подвергается дополнительным операциям - проварке в некотором удалении от места пережатия и отрезке. Масса механизма без учета пневмоисточника - 37 кг, габариты - 890х770х325 мм. Масса сварочного устройства без учета источника питания и систем охлаждения и подачи рабочего тела - 25 кг. К недостаткам прототипа следует отнести необходимость последующих операций, чреватых опасными последствиями проварки и обрезки части трубопровода на некотором расстоянии от места пережатия, гарантирующих герметичность, внушительные габариты и масса механизма, не говоря уже о сложности организации его работы, и возможность контакта с небезобидным содержимым трубопровода, практически исключающие возможность его использования в условиях на КА. Любые работы в открытом Космосе усложнены трудностями перемещения и фиксации самого оператора, переноски орудий труда и средств контроля исполнения, кабелей и трубопроводов их питания, необходимостью работать в скафандре, сложностью оборудования КА и визуального контроля из-за чрезвычайно контрастного освещения. Поэтому безопасность и простота работы, надежность и доступность питания являются основными критериями пригодности инструмента для работы на КА. Таким образом, задача состоит в необходимости создания такой конструкции устройства для пережатия металлических трубопроводов КА, которая, предоставляя возможность безопасной и уверенной работы оператора в скафандре в местах с ограниченными доступом и визуальным контролем операции пережатия функционирующего трубопровода, обеспечила бы требуемую герметичность и необходимую прочность участка трубопровода, пережатого с его помощью без какого-либо термического воздействия непосредственно на трубопровод при одновременном уменьшении габаритов и массы всего устройства и минимальном потреблении энергии для проведения операции пережатия. Техническим эффектом от решения поставленной задачи явилось создание устройства для пережатия металлических трубопроводов, которое отвечает поставленным требованиям, т.е. обеспечена требуемая герметичность и необходимая прочность участка трубопровода, пережатого с его помощью без какого-либо термического воздействия непосредственно на трубопровод, предоставлена возможность безопасной и уверенной работы оператора в скафандре в местах с ограниченными доступом и визуальным контролем операции пережатия функционирующего трубопровода, при одновременном принципиальном уменьшении габаритов и массы всего устройства и минимальном потреблении энергии для проведения операции пережатия. Это достигается тем, что в устройстве, содержащем корпус, силовую скобу с матрицей и пуансоном, закрепленным на штоке, связанным через толкатель с силовым приводом, и силовой привод, силовая скоба выполнена в виде отделяемой головки, связанной с корпусом многозаходной трапецеидальной несамотормозящейся резьбой с пропусками для размещения в корпусе управляемых стопоров для резьбы. Силовая скоба снабжена опорной втулкой для силового стопорения штока пуансона и пустотелой осью. Закрепленная на силовой скобе матрица выполнена из пружинящего материала с прогибом в направлении пережимаемого трубопровода, рабочие кромки матрицы и пуансона имеют ограничители остаточной деформации трубопровода в виде плоских обнижений. Введены силовые С-образные пружинящие стопоры, размещенные в специальной проточке штока пуансона. Силовой привод выполнен в виде набора колец из материала с эффектом памяти формы с установленным на теплопроводящей пасте внутри него электронагревателем и с теплоизоляцией в виде шайб и тонкостенной трубы из термостойкого высокопрочного материала. Кроме того, введен механизм разделения, состоящий из предохранительной тороидальной пружины, закрепленной в торце толкателя в контакте со штоком пуансона, толкателя, снабженного кромкой взаимодействия с управляемыми стопорами для резьбы, и самих управляемых стопоров. Введены также ряды выступов удержания устройства, равномерно размещенные на внешней поверхности корпуса, и пружинящий фиксатор захвата пережимаемого металлического трубопровода с дужкой, надетый на консоли пустотелой оси силовой скобы, при этом силовая скоба в зоне контактирования с пережимаемым металлическим трубопроводом имеет скошенные боковые поверхности для взаимодействия с пружинящим фиксатором захвата. Таким образом, масса самого устройства снабжена более чем на 1.5 порядка разделение устройства после обжатия трубопровода позволяет оставить на пережатом участке только отделяемую головку, масса которой составляет лишь 20-25% массы всего устройства, баланс остаточных после обжатия трубопровода и разделения устройства напряжений в корпусе силовой скобы, матрице и пережатом трубпроводе обеспечивает требуемую герметичность пережатого участка трубопровода во всех условиях работы КА и на требуемое время, вместо громоздкой и сложной системы пневмогидравлического привода применен компактный силовой привод с высоким уровнем запаса механической энергии на базе монокристалла с эффектом памяти, для работы которого достаточно бортовой сети электропитания на КА или даже переносного аккумулятора емкостью 12 А

Формула изобретения
Устройство для пережатия металлических трубопроводов, преимущественно в открытом космосе, содержащее корпус, силовую скобу с матрицей и пуансоном с направляющими, закрепленными на штоке, связанным через толкатель с силовым приводом, и силовой привод, отличающееся тем, что силовая скоба выполнена в виде отделяемой головки, связанной с корпусом многозаходной трапецеидальной резьбой с пропусками для размещения в корпусе управляемых стопоров для резьбы, и снабжена опорной втулкой для силового стопорения штока пуансона и пустотелой осью, закрепленная на силовой скобе матрица выполнена из пружинящего материала с прогибом в направлении пережимаемого трубопровода, рабочие кромки матрицы и пуансона имеют ограничители остаточной деформации трубопровода в виде плоских обнижений, введены силовые с-образные пружинящие стопоры, размещенные в специальной проточке штока пуансона, силовой привод выполнен в виде набора колец из материала с эффектом памяти формы с установленным на теплопроводящей пасте внутри него электронагревателем и с теплоизоляцией в виде шайб и тонкостенной трубы из термостойкого высокопрочного материала, кроме того, введен механизм разделения, состоящий из предохранительной тороидальной пружины, закрепленной в торце толкателя в контакте со штоком пуансона, толкателя, снабженного кромкой взаимодействия с управляемыми стопорами для резьбы, и самих управляемых стопоров, введены также ряды выступов удержания устройства, равномерно размещенные на внешней поверхности корпуса, и пружинящий фиксатор захвата пережимаемого металлического трубопровода с дужкой, надетый на консоли пустотелой оси силовой скобы, при этом силовая скоба в зоне контактирования с пережимаемым металлическим трубопроводом имеет скошенные боковые поверхности для взаимодействия с пружинящим фиксатором захвата.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9