Изобретение относится к холодильной технике и может быть использовано в системах кондиционирования, в пищевой, химической и газовой промышленности. Холодильная установка содержит один замкнутый контур хладагента и два замкнутых контура хладоносителя. В контуре хладагента последовательно установлены компрессор, конденсатор, теплообменник, ресивер, дроссельный вентиль и три параллельных испарителя. Второй и третий испарители выполнены в виде технологического и режимного аккумуляторов холода. В контуре хладагента также имеются дополнительный компрессор, соединенный с конденсатором и через аккумуляторы с ресивером, барорегулирующий вентиль, размещенный за режимным аккумулятором холода, два дополнительных дроссельных вентиля, установленных перед аккумулятором, и три магнитных клапана, помещенных после каждого дроссельного вентиля. Первый контур хладоносителя соединяет охлаждаемый объект через испаритель с первым насосом и первым магнитным клапаном. Второй контур соединяет охлаждаемый объект с первым трехходовым вентилем, через конденсатор с градирней и вторым трехходовым вентилем, затем через технологический аккумулятор холода со вторым насосом и вторым магнитным клапаном. Использование изобретения позволит увеличить термодинамическую эффективность установки. 3 ил.
Изобретение относится к холодильной технике, а именно к холодильным установкам, и может быть использовано в средних и крупных холодильных установках во всех областях применения холодильной техники и в системах кондиционирования воздуха, в том числе во всех отраслях пищевой промышленности для получения и хранения охлажденных и замороженных пищевых продуктов, в химической и газовой промышленности.
В холодильной технике нашли применение холодильные установки с технологическими аккумуляторами холода, в которых, охлаждая воду (или рассолы) или намораживая лед, аккумулируют избыточную холодильную мощность с температурным потенциалом, определяемым технологией охлаждения продукта. В составе холодильных установок такие аккумуляторы используют в качестве пиковых генераторов, для снятия кратковременных (продолжительностью не более четырех часов) тепловых нагрузок или при несовпадении суммы максимальных теплопритоков с теплоотводом к холодильной установке.
Известно (см. , например, Карпис Е.Е. СКВ с ледогенераторами и аккумуляторами "ледяной" воды //Холодильная техника, 1994, 6, с. 17), что в США и Канаде, основываясь на технико-экономические расчеты, все чаще стали применять в системах кондиционирования воздуха (СКВ) "ледяную" воду с температурой около 2
oС, получаемую с помощью ледогенераторов. Зарядка аккумуляторов "ледяной" воды от ледогенераторов происходит в непиковые ночные часы работы электростанций, когда действуют удешевленные тарифы на отпускаемую электроэнергию, а разрядка - в дневные часы. Оснащение холодильных установок льдоаккумуляторами уменьшает капитальные затраты на компрессорное оборудование и, в целом, повышает холодопроизводительность установок. Таяние 1000 кг льда в течение одного часа соответствует 10 кВт

ч холода при 0
oС. При этом холодильные компрессоры могут быть отключены полностью или частично, что дает экономию электроэнергии, обеспечивает равномерное потребление электроэнергии и позволяет уменьшать холодопроизводительность устанавливаемого оборудования.
Известна холодильная установка (см. патент США 53070642), содержащая замкнутый контур хладагента, в котором последовательно установлены компрессор, конденсатор, ресивер, дроссельный вентиль, испаритель и ледогенератор - аккумулятор холода, обеспечивающие охлаждение объектов с различными температурами.
В установке предусматривается аккумулирование холода путем выработки льда или замораживания другого хладоносителя типа полиэтиленгликоля в ночные часы, когда тариф на электроэнергию значительно снижен, и отдача этого холода (путем таяния льда) в вечерние часы "пик" при более высоком тарифе. Системой управления предусмотрена возможность работы в трех стационарных режимах (выработка льда, прямое охлаждение без выработки льда и таяние льда) и двух переходных, названных гипермиграцией и откачкой, с автоматическим переходом из одного режима в другой, в зависимости от параметров воздуха и тепловой нагрузки в кондиционируемом помещении. Режим гипермиграции позволяет переключиться на режим таяния подачей хладагента в нужном месте ледогенератора, режим откачки насосом предусматривается для перемещения хладагента в конденсатор и перехода от двух других режимов в режим прямого охлаждения.
К недостаткам рассмотренной установки следует отнести зависимость температуры конденсации хладагента и температуры жидкого хладагента после конденсатора от изменения параметров внешней окружающей среды, что не позволяет снизить эксплуатационные энергозатраты в цикле холодильной машины и, следовательно, суммарные энергозатраты на выработку холода в установке.
Известна холодильная установка (см. патент США 5386709), содержащая замкнутый контур хладагента, в котором последовательно установлены компрессор, конденсатор, ресивер, теплообменник-переохладитель, дроссельный вентиль, испаритель, насос, и теплоаккумулирующую систему, где в емкости находится охлаждающая среда, например вода или водный раствор этиленгликоля.
Насос в системе охлаждающей среды связан линией с ручным или автоматическим переключающим устройством, с датчиком и трубопроводом с клапаном, с элементом теплообменника-переохладителя. Подаваемая насосом охлаждающая жидкость после переохлаждения хладагента возвращается по трубопроводу на вход емкости охлаждающей среды.
К недостаткам рассмотренной установки следует отнести зависимость температуры конденсации хладагента от изменения параметров внешней окружающей среды, что не позволяет снизать эксплуатационные энергозатраты в цикле холодильной машины и, следовательно, суммарные энергозатраты на выработку холода в установке.
Известна холодильная установка (см. патент США 4412426), содержащая замкнутый контур хладагента, в котором последовательно установлены компрессор, воздушный конденсатор, дроссельный клапан и испаритель, являющийся одновременно конденсатором верхней части тепловых труб, установленных в баках, заполненных водой, в специальном подземном теплоизолированном хранилище, а также насос, воздухоохладитель и трехходовой смесительный клапан.
При работе холодильной установки в испарителе-конденсаторе происходит конденсация антифризного рабочего вещества тепловых труб, которое стекает в нижнюю часть тепловых труб, помещенных в хранилище, и, испаряясь, охлаждает воду в баках ниже 0
oС. На наружных поверхностях тепловых труб, помещенных в воду, нарастают сталактиты льда, являющиеся аккумуляторами холода. Насос забирает и подает охлажденную воду в поверхностный воздухоохладитель, где происходит охлаждение воздуха здания. Перед этим воздухоохладителем установлен трехходовой смесительный клапан, через который подмешивают отепленную после воздухоохладителя воду в воду, подаваемую насосом.
К недостаткам рассмотренной установки следует отнести зависимость температуры конденсации хладагента и температуры жидкого хладагента после конденсатора от изменения параметров внешней окружающей среды, что не позволяет снизить эксплуатационные энергозатраты в цикле холодильной машины и, следовательно, суммарные энергозатраты на выработку холода в установке.
Известна холодильная установка (см. патент РСТ 96/29555, 1996), содержащая замкнутый контур хладагента, в котором последовательно установлены компрессор, конденсатор, ресивер, дроссельный вентиль и три параллельных испарителя, обеспечивающих охлаждение объектов с различными температурами. Схема подключения испарителей, оснащенная электромагнитными вентилями, позволяет обеспечить последовательную и параллельную работу на охлаждаемые объекты.
К недостаткам рассмотренной установки следует отнести зависимость температуры конденсации хладагента от изменения параметров внешней окружающей среды, что не позволяет снизить эксплуатационные энергозатраты в цикле холодильной машины и, следовательно, суммарные энергозатраты на выработку холода в установке.
Известна холодильная установки (см. патент США 5323618), содержащая два контура хладагента, при этом первый контур содержит компрессор, конденсатор, дроссельный клапан, испаритель и отделитель жидкого хладагента, а второй контур содержит компрессор, аккумулятор холода, дроссельный клапан, испаритель и отделитель жидкого хладагента. Оба контура соединены электромагнитными клапанами так, что при их открытии оба испарителя работают параллельно. Такие же клапаны установлены на входе в испарители. Дроссельные клапаны обоих контуров, а также насос второго контура снабжены электромагнитными клапанами. В качестве аккумулятора холода второго контура используется емкость с жидкостью, аккумулирующей холод (например, водой), через которую пропущен теплообменник второго контура. В зависимости от внешних условий и состояния установки система автоматического регулирования выводит ее на необходимые режимы работы, такие как параллельная работа обоих контуров, кондиционирование с аккумуляцией холода, только аккумуляция холода, работа только первого контура, работа только второго контура. Это достигается соответствующим переключением соленоидных клапанов и включением и выключением насоса и компрессора. Система автоматического регулирования постоянно следит за работой компрессора и процессом аккумуляции холода.
Задачей настоящего изобретения ставится увеличение термодинамической эффективности работы холодильной установки путем поддержания постоянной температуры конденсации хладагента и понижения температуры жидкого хладагента после конденсатора, независимо от параметров окружающей среды и наличия высокой тарифной стоимости электроэнергии, за счет увеличения удельной холодопроизводительности хладагента и снижения удельных энергозатрат в холодильном цикле заявляемой холодильной установки.
Поставленная задача достигается тем, что согласно заявляемому холодильная установка содержит замкнутый контур хладагента, в котором последовательно установлены компрессор, конденсатор, ресивер, теплообменник, размещенный между конденсатором и ресивером, дроссельный вентиль и три параллельных испарителя, при этом второй и третий испарители выполнены в виде технологического и режимного аккумуляторов холода соответственно, при этом контур хладагента снабжен дополнительным компрессором, соединенным с конденсатором и через аккумуляторы с ресивером, барорегулирующим вентилем, расположенным за режимным аккумулятором холода, двумя дополнительными дроссельными вентилями, установленными перед аккумулятором, и тремя магнитными клапанами, помещенными после каждого дроссельного вентиля, а также установка снабжена двумя замкнутыми контурами хладоносителя, каждый из которых включает охлаждаемый объект, причем первый контур соединяет охлаждаемый объект через испаритель с первым насосом и первым магнитным клапаном, второй контур соединяет охлаждаемый объект с первым трехходовым вентилем, через конденсатор с градирней и вторым трехходовым вентилем, затем через технологический аккумулятор холода со вторым насосом и вторым магнитным клапаном, при этом второй трехходовой вентиль соединен через режимный аккумулятор холода с третьим насосом и через теплообменник - с первым трехходовым вентилем.
Оснащение холодильной установки, содержащей последовательно установленные в замкнутых контурах циркуляции хладагента в первом контуре испаритель, компрессор, конденсатор, теплообменник, линейный ресивер и дроссельный клапан, во втором контуре - технологический аккумулятор холода, связанный с линейным ресивером через дроссельный клапан и компрессором, подсоединенным соответственно к конденсатору, насосы подачи хладоносителя - к охлаждаемому технологическому объекту, электромагнитные клапаны, установленные после дроссельных клапанов и насосов обоих контуров, которые через нагнетательные трубопроводы хладагента и трехходовой смесительный клапан связаны с технологическим потребителем холода, при том, что между линейным ресивером и компрессорами в контуре циркуляции хладагента дополнительно установлены дроссельный клапан, режимный аккумулятор и барорегулирующий вентиль, причем режимный аккумулятор оснащен насосом подачи хладоносителя, связанным трубопроводом через теплообменник с трехходовым вентилем, который трубопроводом через регулятор температуры связан с возвратной магистралью хладоносителя из технологического объекта, а через смесительный трубопровод - с конденсатором хладагента и градирней, при этом градирня возвратным трубопроводом хладоносителя через трехходовой вентиль связана с технологическим и режимным аккумуляторами, позволяет получить - снижение удельных энергозатрат в холодильном цикле вследствие понижения давления конденсации ниже давлений, определяемых в дневные часы параметрами окружающей среды, - увеличение удельной холодопроизводительности жидкого хладагента перед дросселированием путем понижения температуры жидкого хладагента после конденсатора, используя холод, аккумулированный в режимном аккумуляторе, в ночные часы и при низком тарифе на электроэнергию.
На фиг. 1 на Т-S-диаграмме показано отображение холодильного цикла работы холодильной установки; на фиг. 2 показана принципиальная схема холодильной установки, которой обеспечивается работа с аккумуляцией холода; на фиг. 3 приведена взаимосвязь параметров окружающей среды, температуры конденсации хладагента, уровня теплопритоков и аккумуляции холода при наличии различных тарифов на оплату электроэнергии.
Согласно рассматриваемого цикла (фиг. 1) пары хладагента состояния перегретого пара (точка 1) с параметрами Т1, Ро (точка 1) сжимают (условно - в адиабатном одноступенчатом процессе сжатия 1-2) до состояния точки 2 с параметрами Т2нр и Рк.нр, где индекс "нр" - нормативный режим работы. Затем пары хладагента конденсируются при температуре конденсации Тк.нр (процесс 2нр-3нр). (Цикл одноступенчатого сжатия на фиг. 1 приведен для упрощения описания.) Затем у жидкого хладагента состояния точки 3 с температурой Тк.нр и давлением Рк.нр понижают температуру до значения Ти ("переохлаждают жидкость") (процесс 3нр-4), после чего дросселируют (процесс 4-5) и полученную парожидкостную смесь состояния точки 5 с параметрами То1 и Ро1 направляют на испарение для охлаждения хладоносителя до технологической температуры Тхн.т в испарителе и технологическом аккумуляторе. Образующиеся в испарителе и технологическом аккумуляторе пары хладагента состояния точки 6 подогреваются в процессе 6-1 и всасываются в компрессор.
Жидкий хладагент с температурой Ти также дросселируют (процесс 4-7) и полученную парожидкостную смесь состояния точки 7 с параметрами То2 и Ро2 направляют на испарение для охлаждения хладоносителя до нормативной температуры Тх. р в режимном аккумуляторе. Образующиеся в режимном аккумуляторе пары хладагента состояния точки 8 дросселируют с давления Ро2 до давления Ро1 (процесс 8-9), смешивают с парами, отводимыми из испарителя и технологического аккумулятора (6-9), и отсасывают компрессором.
Цикл работы холодильной машины по заявляемому способу замыкается.
Холодильная установка (далее - установка) по фиг. 2 содержит в двух контурах циркуляции хладагента компрессоры 1 и 2, конденсатор 3, теплообменник-переохладитель 4, линейный ресивер 5, дроссель-вентиль 6, испаритель 7, дроссельный вентиль 8, технологический аккумулятор холода 9. Испаритель 7 оснащен насосом 10, технологический аккумулятор 9 - насосом 11. Между вентилем 6 и испарителем 7 установлен соленоидный клапан 12, между вентилем 8 и технологическим аккумулятором 9 установлен соленоидный клапан 13. На магистралях подачи хладоносителя от насосов 10 и 11 к технологическому потребителю холода 14 установлены соленоидные клапаны 15 и 16, на возвратной магистрали 17 от потребителя холода к испарителю 7 и технологическому аккумулятору установлен соленоидный клапан 18. В контуре циркуляции хладагента между линейным ресивером 5 и компрессором 2 дополнительно и последовательно размещены дроссельный вентиль 19, режимный аккумулятор 20 и барорегулирующий вентиль 21. Между вентилем 19 и режимным аккумулятором 20 установлен соленоидный клапан 22.
Режимный аккумулятор 20 оснащен насосом 23, который трубопроводом 24 через теплообменник 4 связан с трехходовым вентилем 25, последний через регулятор температуры 26 связан с возвратной магистралью 17 от технологического потребителя холода 14 и трубопроводом 27 через конденсатор хладагента 3 связан с градирней 28, которая трубопроводом 29 через трехходовой вентиль 30 и трубопроводом 31 связана с технологическим аккумулятором 9 и трубопроводом 32 связана с режимным аккумулятором 20.
На фиг. 3 приведен характерный график изменения теплопритоков Q
i в течение суток в летний период по данным распределительного холодильника, в котором охлаждают и хранят продукты. Из фиг. 3 следует, что основные затраты энергии на выработку холода для компенсации теплопритоков на холодильнике оплачивают в период действия высоких тарифов С
2 и С
3 на оплату электроэнергии, а время поступления минимальных теплопритоков совпадает со временем действия минимального тарифа С
1. Здесь Qт - теплопритоки, обусловленные разностью температур воздуха - наружного То.с и в камерах холодильника Ткм, Qр - теплопритоки от солнечной радиации; Qп - теплопритоки от обработки продукта.
Как следует из совместного рассмотрения фиг. 1, 2 и 3, в период времени

1, когда действует тариф С1, компрессор 2 отсасывает пары хладагента из технологического 9 и режимного 20 аккумуляторов холода. В аккумуляторе 9 поддерживают температуру кипения хладагента То1, соответствующую необходимой технологической температуре хладоносителя Тхн.т, в аккумуляторе 20 температуру кипения То2, соответствующую температуре хладоносителя Тх.р, обеспечивающей поддержание стабильной "нормативной" температуры конденсации Тк.нр (или Тк.нр, соответствующая Тк.мн).
Пары хладагента компрессором 2 нагнетают в конденсатор 3, где конденсируются при температуре Тк.нр, причем охлаждающий хладоноситель (например, воду) подают насосом 23 через трубопровод 24 в теплообменник 4, а после него через вентиль 25 - в конденсатор 3, и из последнего через трубопровод 27 - в градирню 28.
Из градирни 28 отепленный хладоноситель по трубопроводу 29 через вентиль 30 и трубопровод 32 возвращается в режимный аккумулятор 20. Соответственно проводят аккумуляцию холода в технологическом аккумуляторе 9, насос 11 при открытом соленоидном клапане 16 подает охлажденный хладоноситель в технологический потребитель холода 14, откуда отепленный хладоноситель по возвратному трубопроводу 17 при открытом соленоидном клапане 18 возвращается в технологический аккумулятор 9.
С ростом То.с и соответственно Тк (от величины Тк.мн), увеличением суммы теплопритоков

Q
i и вводом в действие тарифа С
2 в схеме установки производят следующие переключения. Вводятся в работу первый контур, при этом компрессоры 1 и 2 работают только на отвод теплопритоков к холодильнику, увеличивая тепловую нагрузку на конденсатор 3. В системе подачи охлаждающей среды на конденсатор 3 и возврата ее вентили 25 и 30 устанавливают на режим смешения отепленной среды после теплообменника с более холодной, идущей из технологического потребителя холода 14, и охлажденную воду подают на конденсатор 3, поддерживая Тк при значении Тк.нр. Массовый расход отепленного хладоносителя, направляемый на смешение, регулируется с использованием регулятора температуры 26.
При снижении величины

Q
i и в период времени ввода в действие тарифа С
3 в схеме во втором контуре останавливают компрессор 2, закрывают соленоидные клапаны 13 и 22, при этом компрессор 1 работает на испаритель 7, охлаждая хладоноситель, который насосом 10 при открытом соленоидном клапане 15 поступает в технологический потребитель холода 14. Насос 11 при открытом соленоидном клапане 16 продолжает прокачивать хладоноситель по контурам "технологический аккумулятор холода 9 - технологический потребитель 14" и "смешение" совместно с насосом 23. Тем самым обеспечивается понижение Тк до минимального значения Тк.нр (см. фиг. 3).
После истечения времени действия тарифа С3 соленоидные клапаны 13 и 22 устанавливают в исходное положение прямотока, первый контур работает на текущее охлаждение потребителя 14, во втором контуре осуществляется аккумуляция холода в технологическом 9 и режимном 20 аккумуляторах холода.
Последовательность работы холодильной установки повторяется.
Таким образом, заявляемая холодильная установка согласно фиг. 1 и 2 по сравнению с известными обеспечивает увеличение удельной холодопроизводительности жидкого хладагента перед дросселированием путем поддержания стабильной температуры конденсации хладагента и понижения температуры жидкого хладагента после конденсатора, используя холод, аккумулированный в режимном аккумуляторе, в ночные часы и при низком тарифе на электроэнергию.
Как видно из фиг. 1, проведение традиционного процесса дросселирования по процессу 3мх-5мх характеризуется величиной удельной холодопроизводительности q=h1-h5мх, в то время как в заявляемой установке величина удельной холодопроизводительности составляет q=h1-h5, то есть больше на величину

q= h5мх-h5.
Заявляемую холодильную установку по сравнению с известными характеризует размещение дополнительно в контуре циркуляции хладагента между линейным ресивером и компрессором дроссельного клапана, режимного теплообменника и барорегулирующего клапана, установленных параллельно испарителю и технологическому аккумулятору холода, что обеспечивает поддержание стабильными значений постоянной "нормативной" температуры конденсации и пониженной температуры жидкого хладагента после конденсатора.
Для снижения стоимости выработанного холода используется аккумулятор холода (режимный аккумулятор) для регулирования работы системы холодильной установки путем понижения температуры конденсации хладагента Тк
j относительно "традиционного" значения температуры конденсации Тк, которую определяют в общем случае, как известно, параметры окружающей среды - температура То.с и относительная влажность воздуха
o.c. В этом случае отпадают существующие ограничения по выбору температурного потенциала в аккумуляторе холода, температуру Тк1 регулируют независимо от изменения То.с и
o.c, что обеспечивает равномерную нагрузку на компрессоры и уменьшение их износа, стабильный температурный режим в холодильнике и сокращение усушки хранимых продуктов.
Таким образом, при наличии переменных по времени суток тарифов оплаты за электроэнергию и резко переменном графике тепловой нагрузки холодильной установки, и значительном изменении параметров окружающей среды в течение суток, в заявляемой установке при наличии (или отсутствии) в ее составе технологического аккумулятора холода для одновременной компенсации суммарных теплопритоков вводят режимный аккумулятор, в котором осуществляют аккумуляцию энергии в форме холода, запасая его в период действия низкой тарифной стоимости С
1 и используя аккумулированный холод в период действия высокой тарифной стоимости С
2 и С
3.
Тем самым, обеспечивается поддержание постоянной ("нормативной") температуры конденсации хладагента, что обеспечивает снижение суммарных энергозатрат и других эксплуатационных затрат, а также приведенных затрат на систему холодильной установки.
Формула изобретения
Холодильная установка, содержащая замкнутый контур хладагента, в котором последовательно установлены компрессор, конденсатор, теплообменник, дроссельный вентиль и три параллельных испарителя, отличающаяся тем, что второй и третий испарители выполнены в виде технологического и режимного аккумуляторов холода соответственно, при этом контур хладагента снабжен дополнительным компрессором, соединенным с конденсатором и через аккумуляторы с ресивером, барорегулирующим вентилем, расположенным за режимным аккумулятором холода, двумя дополнительными дроссельными вентилями, установленными перед аккумулятором, и тремя магнитными клапанами, помещенными после каждого дроссельного вентиля, а также установка снабжена двумя замкнутыми контурами хладоносителя, каждый из которых включает охлаждаемый объект, причем первый контур соединяет охлаждаемый объект через испаритель с первым насосом и первым магнитным клапаном, второй контур соединяет охлаждаемый объект с первым трехходовым вентилем, через конденсатор с градирней и вторым трехходовым вентилем, затем через технологический аккумулятор холода со вторым насосом и вторым магнитным клапаном, при этом второй трехходовой вентиль соединен через режимный аккумулятор холода с третьим насосом и через теплообменник - с первым трехходовым вентилем.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3