Способы получения тиосемикарбазонов пиридин-2- карбоксальдегидов и промежуточных пиридин-2- карбоксальдегидов
Изобретение относится к усовершенствованному способу получения соединений формулы (I), где R4 представляет Н или СН3, включающему взаимодействие соединения формулы 2-С, в котором R1 представляет группу NO2, с тиосемикарбазидом с получением тиосемикарбазона формулы ТS1, с последующим восстановлением полученного соединения. Предложен также способ получения тиосемикарбазона формулы TS2, включающий взаимодействие соединения 2-С, в котором R1 представляет группу NHP с тиосемикарбазидом. Предложены также способы получения промежуточных соединений 2-С, где R1 представляет NO2, NH2, NHP, NPP', N3 или CO2R2, P и Р' представляют защитные группы, R2 представляет C1-С3алкил, R4 представляет Н или СН3, и соединения формулы (4). Предлагаемые способы получения тиосемикарбазонов пиридин-2-карбоксальдегидов позволяют увеличить выход целевых продуктов до 30% из легко доступных исходных веществ. 4 н. и 17 з.п. ф-лы, 3 ил., 1 табл.




где R представляет Cl, Br, I, OMs, OTf или OTs;
R1 представляет NО2, NH2, NHP, NPP', N3 или CO2R2;
P и Р' представляют защитные группы;
R2 представляет Me, Et, Pr или i-Pr;
R3 представляет H, C1-C20алкил, арил, замещенный арил или CO2R2; и
R4 представляет Н или СН3. Защитные группы, которые могут использоваться в качестве Р и Р', включают сложноэфирные группы, такие какС(О)OR5, где R5 представляет алкильную группу, такую как метил, этил, пропил, изопропил, бутил и трет-бутил, фенил, замещенный фенил, бензил и замещенный бензил, наряду с многими другими. Также могут использоваться другие аминозащитные группы, которые хорошо известны в данной области. Реакция 2-винилирования предпочтительно протекает при использовании реагента, выбранного из следующих: Вu3SnСН=СНР3, (OH)2-B-CH=chr3, ClZnCH= chr3 и XMgCH=chr3 (реактив Гриньяра, где Х представляет галоген, такой как I, Br, Cl, наряду с другими). Реакция винилирования протекает в присутствии трифенилфосфина (РРh3) и/или тетракис(трифенилфосфин)палладия [Pd(РРh3)4), обычно в растворителе, таком как толуол, ксилол или другом органическом растворителе, при нагревании. При введении винильной группы в С-2 положение пиридина такая группа может быть впоследствии превращена в альдегид (путем озонолиза или эквивалентного способа), который может быть затем превращен в тиосемикарбазон карбоксальдегида при получении 3-АР или 3-АМР. При альтернативной реакции винилирования с использованием стирола, 3-метилпропеноата или подобных винилирующих реагентов в сочетании с ацетатом палладия [Pd(OAc)2] и трифенилфосфином (РРh3) будут вводить винильную группу в С-2 положение пиридинового фрагмента, которая легко может быть превращена в 2-карбоксальдегид или в конечном счете в семикарбазон или гидразон карбоксальдегида. Другие важные аспекты настоящего изобретения включают усовершенствование синтеза предшествующего уровня. По предшествующему уровню техники превращение производного 2-хлорпиримидина в 2-метилпиримидиновое производное представляло двухстадийный процесс, имеющий общий выход только 60%. По настоящему изобретению такое превращение осуществляют в одну стадию с выходом приблизительно 90%. При осуществлении такого мотивирования в условиях Сузуки (Suzuki) настоящее изобретение помимо уменьшения числа требуемых для синтеза стадий и повышения общего выхода также упрощает обработку и, следовательно, упрощает коммерческое крупномасштабное производство. Высокий выход в такой реакции является неожиданным результатом. Кроме того, тогда как по предшествующему уровню техники требуется трудное превращение 2-карбоксальдегида в ацеталь и восстановление нитрогруппы в 3-положении перед взаимодействием с тиосемикарбазидом во 2-положении, авторы настоящего изобретения открыли более короткий и более эффективный способ, в котором 2-карбоксальдегид непосредственно взаимодействует с тиосемикарбазидом с последующим простым восстановлением нитрогруппы. В предпочтительных аспектах настоящего изобретения указанные способы имеют то преимущество, что допускают получение больших количеств 3-АР или 3-АМР без использования дорогих исходных веществ, приводя к конечному продукту с высоким общим выходом. Способами по данному изобретению получают противораковые соединения высокой степени чистоты с выходами, подходящими для крупномасштабного и коммерческого получения. Настоящие способы адресуются к относительно низким выходам способов по предшествующему уровню техники и делают организацию серийного производства 3-АР и 3-АМР экономически жизнеспособной. Краткое описание фигур
На фиг.1, схема 1, показан синтез 3-АР и 3-АМР по предшествующему уровню техники, каждый синтез протекает через пиридиновое 2-карбоксальдегидное промежуточное соединение (4 и 11). В случае 3-АР синтез протекает, завершаясь общим выходом примерно 9,3%. В случае 3-АМР синтез заканчивается с общим выходом примерно 2,3%. На фиг. 2, схема 2, показаны два новых синтеза 3-АР из 2-хлор-3-нитропиридина 1 и новый синтез из 2-хлор-3-аминопиридина 19. Эти синтезы приводят к конечному результату с общими выходами в диапазоне от 31,5% до 68,4%. Действительно, химический процесс, описанный для синтеза С, был использован для получения 3-АР в количествах, превышающих 20 г, в одну стадию. На фиг. 3, схема 3, приведены два новых синтеза 3-АМР, через промежуточный 2-карбоксальдегид 11. Эти синтезы приводят к конечному результату с общими выходами от 5,8% до 34%. Подробное описание изобретения
Термин "неоплазия" используется в данном описании для обозначения патологического процесса, который приводит к образованию и росту раковой или злокачественной опухоли, т.е. ненормальной ткани, которая растет в результате быстрого размножения (пролиферации) клеток, часто более быстро, чем нормальная ткань, и продолжает расти после воздействия, которое инициирует прекращение нового роста. Злокачественные опухоли имеют частичный или полный дефицит структурной организации и функциональной координации с нормальной тканью и большей частью проникают в окружающие ткани, давая метастазы в нескольких местах, и, вероятно, появляются вновь после попытки удаления и вызывают смерть пациента, если не предпринять адекватное лечение. Как он используется в данном описании, термин "неоплазия" используется для описания всех раковых болезненных состояний и охватывает или включает в себя патологический процесс, связанный с злокачественными гематогенными, асцитными и плотными опухолями. Термин "защищенный" используется для обозначения фосфатной группы или гидроксильной группы в любом одном или нескольких из промежуточных соединений, которые защищены от нежелательных взаимодействий, но защита которых легко может быть удалена при определенных условиях. Защитные группы, которые могут использоваться в этих целях, включают, например, трихлорэтил, этил, цианоэтил, триметилсилилэтил, силилэтил, трет-бутилдиметилсилил, трет-бутил, трифенилсилил и трет-бутилдифенилсилил, наряду со многими другими, включая сложноэфирные группы, такие как метильная, этильная, пропильная, изопропильная, бутильная и трет-бутильная сложноэфирные группы, наряду с другими. Защитные группы могут быть выбраны в широком диапазоне из класса силильных защитных групп, защитных групп простых эфиров и защитных групп сложных эфиров, каждая защитная группа выбирается по ее способности защищать фрагмент от нежелательного протекающего взаимодействия, легкости ее удаления и химической совместимости. Как обсуждалось ранее, аминные группы в промежуточных соединениях по настоящему изобретению также могут быть защищены. Усовершенствованные синтезы 3-АР и 3-АМР по настоящему изобретению, имеющие более высокие выходы и более безопасно и легко осуществляемые, подчеркнуты на схемах 2 и 3 соответственно. Как доказано на фиг.2, для синтеза 3-АР были разработаны три синтетических пути. Благоприятным образом было уменьшено число стадий в способе, известном из предшествующего уровня техники (смотри фиг. 1, схема 1), за счет исключения стадий введения ацетальной защиты и снятия защиты в синтезе по предшествующему уровню в данной области. В соответствии с путями А и В, как показано на схеме 2, 2-карбоксальдегид 4 непосредственно превращают в гидразон 15 и последующие восстановления функциональной нитрогруппы в аминную группу проводят с использованием или дихлорида олова (см. Atwal K.S., et al., J. Med. Chem., 1996, 39, 305-313, для описания реакций данного типа), или сульфида натрия (восстановление Зинина, смотри Porter H. K., Org. React., 1973, 20, 455-483). По пути С N-Boc-защищенный 2-карбоксальдегид 22 непосредственно вводят в реакцию с тиосемикарбазидом и одновременно удаляют защитную группу с получением 3-АР. Эти общие подходы приводят к 3-АР с хорошими выходами. Три различных подхода показаны на схеме 2 для синтеза 2-карбоксальдегидных пиридиновых промежуточных соединений (соединения 4 и 22). В первом из этих трех подходов, показанном как путь А, метилирование 2-хлорпиридинового соединения 1 с последующим окислением 2-метильной группы диоксидом селена приводит к 2-карбоксальдегидному соединению 4, которое легко превращается в 3-АР в две стадии с высокими выходами. В альтернативном подходе, показанном как ответвление от пути А, 2-метил-3-нитропииридин 3 взаимодействует с диметилформамид-диметилацеталем (ДМФДМА, хотя в данной реакции можно использовать любые подобные ацетальные аналоги ДМФДМА) с получением промежуточного соединения 3а, последующее окисление периодатом натрия (NaIО4) приводит к альдегиду 4 с общим выходом 84%, значительное улучшение по сравнению со способом окисления 2-метил-3-нитропиридина 3 диоксидом селена с получением альдегида 4. Полный синтез 3-АР из 2-хлор-3-нитропиридина 1 может быть осуществлен с общим выходом 55%. В альтернативном способе, показанном как верхнее ответвление от пути В, введение 2-винильной группы с использованием палладий-опосредованной реакции винилирования Стилле в качестве ключевой стадии (см. Attwood M.R., et al., Tetrahedron Lett. , 1996, 37, 2731; Skoda-Foldes R., et al., Tetrahedron Lett. , 1996, 37, 2085; и Sabramanyam С., et al., Tetrahedron Lett., 1996, 37, 459) с последующим озонолизом приводит к 2-карбоксальдегидному соединению 4 с очень высоким выходом. В третьем способе, показанном как путь С и нижнее ответвление от пути В, используется палладий-опосредованная реакция винилирования Хека (смотри Sit S.Y., et al., Bioorg. Med. Chem. Lett., 1996, 6, 499; и Ojima I., et al., Chem. Rev., 1996, 96, 635-662, для описаний реакций этого типа) с последующим озонолизом для получения карбоксальдегидных соединений 4 или 22 (где R представляет защитную группу для 3-аминоположения, включая t-Boc группу, сложноэфирную группу или подобную защитную группу, которые хорошо известны в данной области и согласуются с химией, используемой в данной реакционной последовательности), которые легко превращаются в 3-АР с использованием тиосемикарбазида с последующим использованием условий (например, кислоты) для удаления группы, защищающей аминогруппу, или непосредственно при использовании тиосемикарбазида в НСl. Выход 3-АР для каждого из трех альтернативных синтетических путей превышает в 3-7 раз выход по способу синтеза в соответствии с предшествующим уровнем техники, неожиданно благоприятный результат. Это представляет большое преимущество для промышленного масштабного получения 3-АР для клинических целей и конечного терапевтического применения. На фиг.3 представлены два эффективных пути синтеза 3-АМР. Как проиллюстрировано на фиг.3, синтез, начинающийся с диметилпиридина 8, уменьшает число стадий первоначального синтеза и увеличивает общий выход. Нитрозирование диметилпиридина 8 с последующим окислением 2-метильной группы приводит к 2-карбоксальдегиду 11, который непосредственно подвергают взаимодействию с тиосемикарбазидом, получая 2-тиосемикарбазон 27 с высоким выходом. Наконец, 2-тиосемикарбазон 27 превращают в 3-АМР или в условиях восстановления по Зинину, или с использованием дихлорида олова, приводя к выходу реакции, превышающему примерно в три раза выход в синтезе 3-АР по предшествующему уровню техники. Синтез, начинающийся с замещенного аналога пиридина 24, обеспечивает более эффективный синтез 2-карбоксальдегида 11 за счет использования реакции винилирования Стилле, протекающей с высокими выходами, после превращения 2-гидроксильной группы в аналоге пиридина 24 в 2-OTf группу. Озонолиз 2-винильной группы приводит к 2-карбоксальдегиду 11 с высоким выходом. 2-карбоксальдегид 11 взаимодействует с тиосемикарбазидом с образованием с высоким выходом тиосемикарбазона 27, который восстанавливают в 3-АМР для завершения синтеза с использованием или условий восстановления по Зинину, или дихлорида олова. Путь синтеза, включающий винилирование Стилле с получением ключевого промежуточного соединения 11, исключает трудные реакции нитрования и окисления 2-метильной группы и неожиданно высоко улучшает общий выход, превышающий в 15 раз выход 3-АМР в способе получения по предшествующему уровню техники. Хотя предпочтительные синтетические химические способы были описаны выше, обычному специалисту в данной области будет очевидно, что для получения аналогичных результатов можно использовать замену стадий или эквивалентные стадии. Например, специалист может легко заменить некоторые реагенты и фактически все растворители, используемые для получения промежуточных соединений, как указано на различных схемах. Образование 2-винилпиридиновых промежуточных соединений, например, можно легко проводить с использованием любых подходящих винил-образующих реагентов или сочетания реагентов (включая трифенилфосфин или тетракистрифенилфосфин палладий в качестве подходящих) и любого подходящего растворителя. Окисляющие агенты для превращения винильных групп или бензильных (метильных) групп в альдегиды (во 2-положении пиридинового фрагмента) включают диоксид селена и озон, но также могут использоваться другие подходящие окисляющие агенты. В случае гидрогенолиза (например, 3-нитрогруппы в 3-аминогруппу) подходит применение SnCl2 или Na2S. Обычный специалист в данной области легко способен заменить применение одной защитной группы на другую защитную группу, согласующуюся с общей химией, используемой при синтезе. В частности, ключом к эффективному синтезу 3-АР или 3-АМР является протекающее с высоким выходом введение метильной или винильной группы, предпочтительно винильной группы, предпочтительно винила, во 2-положение пиридинового фрагмента с использованием реакций винилирования Хека или Стилле или реакции метилирования в условиях Сузуки. Эти реакции протекают во 2-положении пиридинового фрагмента с высоким выходом (обычно превышающем 50% и, в большинстве случаев, превышающем 70%). Преимуществом реакции винилирования является то, что 2-винильная группа легко может быть преобразована с использованием протекающей с высоким выходом реакции озонолиза, проводимой в полярном растворителе, таком как метанол, в 2-карбоксальдегидную группу для дальнейшего превращения в 2-тиосемикарбазон. Предпочтительная реакция винилирования представляет собой реакцию винилирования Хека или Стилле, осуществляемую с использованием реагента, выбранного среди следующих: Bu3SnCH= chr3, (OH)2-B-SnCH=chr3, ClZnCH=chr3 и XMgCH=chr. Реакция винилирования протекает в присутствии трифенилфосфина (РРh3) и/или тетракис(трифенилфосфин)палладия [Pd(PPh3)4] обычно в растворителе, таком как толуол, при нагревании. Преимущество реакции метилирования в условиях Сузуки по сравнению с двухстадийным метилированием по предшествующему уровню техники заключается в значительном повышении выхода, уменьшении числа стадий и, следовательно, требуемой обработки и легкости масштабирования синтеза для коммерческого производства. Альтернативно, для введения винильной группы во 2-положение 3-нитропиридина, можно выгодным образом осуществить взаимодействие 2-метил-3-нитропиридина с диметилформамид-диметилацеталем (ДМФДМА) с получением 2-диметиламино-винил-3-ритрспиридина - соединения 3а, последующее окисление которого периодатом натрия (NaIO4) приводит к карбоксальдегиду 4 с неожиданно высоким 84%-ным выходом. При введении метильной или винильной группы в С-2 положение пиридина эта группа может быть превращена в альдегид, который окончательно будет превращен в тиосемикарбазон карбоксальдегида. Тогда как в предшествующем уровне техники требовалось сложное превращение 2-карбоксальдегида в ацеталь и восстановление нитрогруппы в 3-положении перед взаимодействием с тиосемикарбазидом по 2-положению, настоящий способ является более коротким и более эффективным способом, в котором 2-карбоксальдегид непосредственно взаимодействует с тиосемикарбазидом с последующим простым восстановлением нитрогруппы. Восстановление 3-нитрогруппы в данном пути синтеза легко осуществляется с использованием стандартных условий восстановления (SnC12 или Nа2S, наряду с другими способами восстановления). Синтез 3-АР или 3-АМР согласно настоящему изобретению завершается с неожиданно высоким выходом по меньшей мере в 30%, исходя из легко доступных исходных веществ. В некоторых воплощениях выход может достигать 55% или более того. Настоящее изобретение далее описано, только для иллюстрации, в следующих примерах. Специалисту в данной области следует понимать, что эти примеры не являются ограничивающими и что изменение деталей может быть сделано, не отступая от сути и в пределах объема настоящего изобретения. Примеры
В данном разделе приведены подробные условия реакций и характеристики каждого соединения в следующих далее методиках. Все ЯМР спектры зарегистрированы при 300 МГц для 1Н и 75 МГц для 13С на ЯМР спектрометре QE Plus 300 МГц. Масс-спектры регистрировали на масс-спектрометре VG ZAB-SE и приборе VG 70-SE-4F. В данный раздел также включены некоторые существенные ссылки. Все растворители перегоняли перед использованием. Синтез соединения 3 (2-метид-3-нитропиридина) (3)
Способ 1. В колбу, содержащую диэтилмалонат (20 г, 0,125 моль), добавляют натрий (2,0 г, 0,087 моль). Реакционную смесь перемешивают в течение 1 часа при комнатной температуре, а затем нагревают до 120oС (температура масляной бани) в течение 50 минут. К этой желтой суспензии твердого вещества добавляют толуол (120 мл) с последующим добавлением раствора 2-хлор-3-нитропиридина 1 (12,8 г, 0,08 моль) в 40 мл толуола. Реакционную смесь нагревают при температуре кипения с обратным холодильником в течение 8 часов и затем перемешивают в течение ночи при комнатной температуре. Растворитель удаляют при пониженном давлении и остаток растворяют в 30%-ной Н2SО4 (60 мл). Эту реакционную смесь нагревают при 125oС (масляная баня) в течение 7 часов, охлаждают и выливают на лед (200 г). Реакционную смесь нейтрализуют насыщенным раствором NаНСO3, фильтруют через целит, экстрагируют несколько раз диэтиловым эфиром. Объединенные экстракты сушат над безводным Na2SO4. Растворитель упаривают и остаток перегоняют при пониженном давлении, получая 6,65 г (60%) целевого продукта 3. Способ 2. Смесь 2-хлор-3-нитропиридина 1 (793 мг, 5,0 ммоль), метилбороновой кислоты (329 мг, 5,5 ммоль), Рd(РРh3)4 (578 мг, 0,5 ммоль) и К2СО3 (2,073 г, 15,0 ммоль) в диоксане (25 мл) нагревают при кипении с обратным холодильником в течение 2 дней. Затем смесь охлаждают до комнатной температуры и фильтруют. Растворитель удаляют и остаток подвергают флэш-хроматографии (50% этилацетат в гексанах), получая 623 мг (90%) 2-метил-3-нитропиридина 3. 1Н-ЯМР (СDСl3)

К раствору 2-метил-3-нитропиридина 3 (2,07 г, 0,015 моль) в 35 мл диоксана добавляют диоксид селена (1,88 г, 0,017 моль). Реакционную смесь нагревают при кипении с обратным холодильником в течение 16 часов, затем охлаждают до комнатной температуры и фильтруют. Растворитель удаляют при пониженном давлении и остаток очищают флэш-хроматографией на силикагеле (гексаны-ЕtOАс=1:1), получая 1,60 г (70%) целевого альдегида 4. 1H-ЯМР (CDCl3)

Раствор 2-метил-3-нитропиридина (3) (276 мг, 2 ммоль) и диметилформамид-диметилацеталя (ДМФДМА) (477 мг, 4 ммоль) в диметилформамиде (ДМФ) (1 мл) нагревают при 140oС в атмосфере N2 в течение 7 часов, затем перемешивают при комнатной температуре в течение ночи. Растворитель удаляют при пониженном давлении и остаток высушивают в вакууме. Реакционная смесь была абсолютно чистой и содержала один продукт, соединение 3а - 2-диметиламиновинил-3-нитропиридин, который используют на следующей стадии окисления без дополнительной очистки. Раствор 3а, полученного выше, и NaIО4 (1,283 г, 6 ммоль) в 50%-ном водном ТГФ (20 мл), перемешивают при комнатной температуре в течение 2 часов, фильтруют и экстрагируют несколько раз СН2Сl2. Объединенные экстракты промывают насыщенным солевым раствором и сушат над безводным Na2SO4. Выделяют флэш-хроматографии на силикагеле (гексаны - EtOAc=1:1), получая 256 мг (84%) 2-карбоксальдегида 4. Синтез гидразонового соединения 15 из 2-карбоксальдегида (4)
Смесь карбоксальдегида 4 (750 мг, 4,93 ммоль) и тиосемикарбазида (540 мг, 5,92 ммоль) в 70%-ном этаноле (25 мл) перемешивают при комнатной температуре в течение 6 часов, фильтруют и промывают Н2О, C2H5OH, диэтиловым эфиром и сушат в вакууме, получая 893 мг (80%) целевого гидразона 15. 1Н-ЯМР (ДМСО-d6)


Раствор 2-хлор-3-нитропиридина 1 (417 мг, 2,63 ммоль), Pd(PPh3)4 (32 мг, 0,026 ммоль), трифенилфосфина (20 мг, 0,078 ммоль) и винилтрибутилолова (1,00 г, 3,16 ммоль) в толуоле (15 мл) нагревают при кипении с обратным холодильником в течение 2 часов. Реакционную смесь охлаждают до комнатной температуры и затем гасят водой (10 мл). Полученную смесь экстрагируют EtOAc (3


LRMS m/e 151 (МН+). Синтез 2-полуацетального и 2-карбоксальдегидного соединений (17 и 4) из 2-винилпиридинового соединения (16)
Метанольный раствор (20 мл) 2-винилпиридина 16 (800 мг, 5,33 ммоль) подвергают озонолизу при -78oС в течение 15 минут. Реакцию гасят (при -78oС) Me2S (2,2 мл) и полученную реакционную смесь перемешивают в течение ночи при комнатной температуре. Растворитель упаривают и остаток подвергают хроматографии на короткой колонке (4'' силикагель), получая 850 мг (95%) смеси продуктов 17 и 4 (17/4=2:3). Спектр 1Н-ЯМР соответствует опубликованным ранее литературным данным (Santorelli et al., J. Med. Chem., 1992, 35, 3672-3677). 1ЯМР полуацеталь 17 (CDCl3):

Смесь 2-хлор-3-нитропиридина 1 (1,20 г, 7,6 ммоль), метилакрилата (1,31 г, 15,2 ммоль), триэтиламина (0,92 г, 9,1 ммоль), трифенилфосфина (0,60 г, 2,28 ммоль), Pd(OAc)2 (0,17 г, 0,76 ммоль) и 15 мл ДМФ в запаянной ампуле нагревают при 120oС в течение 24 часов. Реакционную смесь охлаждают до комнатной температуры и затем гасят реакцию водой (10 мл). Полученную смесь экстрагируют ЕtOАс (3


Раствор 18 (0,44 г, 5,33 ммоль) в метанол-метилхлориде (12:1; 130 мл) подвергают озонолизу при -78oС, контроль за ходом реакции осуществляют по ТСХ. После завершения реакции избыток О3 удаляют, барботируя через реакционную смесь O2 при -78oС в течение 5 минут. Затем реакцию гасят (при -78oС) с использованием Me2S (5 мл) и полученную реакционную смесь перемешивают при комнатной температуре в течение ночи. Растворитель упаривают и остаток очищают хроматографией на силикагеле (гексаны:ЕtOAc=4:1 до гексаны:ЕtOАс=1: 1), получая 0,286 г (83%) смеси продуктов 17 и 4 (17/4=1:2). Синтез гидразонового соединения 15 из смеси полуацеталя и карбоксальдегида (17 и 4)
К водно-этанольному раствору (10 мл этанола и 5 мл воды) альдегида 4 и полуацеталя 17 (850 мг, 4,85 ммоль) добавляют при комнатной температуре конц. НСl (1 мл), а затем тиосемикарбазид (483 мг, 5,34 ммоль). Реакционную смесь перемешивают при комнатной температуре в течение 6 часов. В этот момент желтое твердое вещество собирают фильтрованием. Полученное таким образом твердое вещество промывают последовательно водой и этанолом три раза, а затем сушат в высоком вакууме в течение 1 часа, получая 1,0 г целевого продукта 15 с выходом 92%. Синтез соединения 7 (3-АР) из гидразона (15)
Способ 1. К раствору SnCl2



Способ 1. Реакция, осуществляемая в запаянной ампуле
Суспензию 2-хлор-3-аминопиридина 19 (1,28 г, 10,0 ммоль), стирола (5,72 мл, 50,0 ммоль), бикарбоната натрия (1,68 г, 20,0 ммоль), трифенилфосфина (1,31 г, 5,0 ммоль) и Pd(OAc)2 (0,12 г, 0,50 ммоль) в ДМФ (20 мл) нагревают при 130oС в течение 24 часов в запаянной ампуле. После этого реакционную смесь охлаждают до комнатной температуры и гасят реакцию насыщенным раствором NаНСО3 (10 мл) и водой (10 мл). Реакционную смесь экстрагируют EtOAc (3х50 мл). Объединенные органические слои промывают насыщенным солевым раствором, сушат над сульфатом натрия и фильтруют. Фильтраты концентрируют в вакууме, остаток хроматографируют (25% этилацетат в гексанах), получая 1,47 г (75%) целевого продукта 20. Способ 2. Реакция, осуществляемая при 1 атмосфере
Суспензию 2-хлор-3-аминопиридина 19 (20 г, 155,6 ммоль), стирола (89 мл, 778 ммоль), бикарбоната натрия (26 г, 311 ммоль), трифенилфосфина (2J г, 78 ммоль) и Pd(OAc)2 (1,74 г, 7,8 ммоль) нагревают при 135oС в течение 48 часов. После этого реакционную смесь охлаждают до комнатной температуры и затем добавляют 100 мл этилацетата. Эту смесь фильтруют через целит и фильтрат концентрируют в вакууме. Остаток хроматографируют (25%-ный этилацетат в гексанах), получая 22,7 г (74%) целевого продукта 20 в виде желтого твердого вещества. Синтез альдегида 22 из производного 2-аминопиридина 20
Производное 2-аминопиридина 20 (5,00 г, 25,51 ммоль) растворяют в теплом бутаноле (100 мл). К этому теплому раствору (~40oС) добавляют (t-Boc)2O (6,68 г, 30,61 ммоль). После перемешивания этого раствора при комнатной температуре в течение нескольких часов добавляют дополнительное количество (t-Boc)2O (2,78 г, 12,76 ммоль). Реакционную смесь дополнительно перемешивают в течение 15 часов при комнатной температуре. После этого из молочнообразной суспензии упаривают растворитель. После удаления растворителя полученный остаток помещают в 100 мл смеси EtOAc/Et2O (1:1). Полученный раствор промывают насыщенным солевым раствором. Органический слой отделяют и сохраняют. Водный слой опять экстрагируют такой же смесью растворителей (3х50 мл). Объединенные органические слои сушат и концентрируют в вакууме, получая 10 г сырого продукта 21 в виде светло-коричневого твердого продукта. Сырое N-Boc защищенное производное пиридина 21 (~25,5 ммоль) растворяют в МеОН (120 мл) и дихлорметане (30 мл). Полученный раствор охлаждают до -78oС и подвергают озонолизу в течение -45 минут. Реакцию останавливают Me2S (8 мл) и перемешивают при комнатной температуре в течение ночи. Растворители удаляют в вакууме, остаток очищают хроматографией на силикагеле (10-15% этилацетат в гексанах), получая 5,23 г (92% для двух стадий) целевого альдегида 22 в виде белого твердого вещества. Синтез соединения 7 (3-АР) из альдегида 22
К смеси альдегида 22 (1,468 г, 6,61 ммоль) и тиосемикарбазида (622 мг, 7,27 ммоль) в смеси EtOH/Н2О (22,5 мл, содержание этанола 67%) добавляют 3 мл конц. НСl. Полученный раствор нагревают при кипении с обратным холодильником в течение 3 часов. Реакционную смесь охлаждают до комнатной температуры и фильтруют. Сырую желтоватую соль 3-АР-НСl переносят в колбу. В эту колбу добавляют 40 мл горячей воды и 8 мл 10% NAHCO3. Смесь перемешивают при комнатной температуре в течение 1 часа (при рН~7,5). Твердое вещество отфильтровывают и затем промывают водой (10 мл), EtOH (3 мл) и Et2O (10 мл). Полученное твердое вещество сушат в высоком вакууме в течение нескольких часов, получая 1,195 г (93%) целевого 3-АР 7. Синтез соединения 10
Дымящую серную кислоту (500 г, 5,1 моль) медленно прибавляют к 2,4-лутидину 8 (55 мл, 0,48 моль) и охлаждают на ледяной бане при перемешивании. Затем медленно добавляют нитрат калия (87,5 г, 0,86 моль). Реакционную смесь перемешивают при комнатной температуре в течение 1 часа и затем нагревают при 110oС в течение дополнительных 7 часов, охлаждают до комнатной температуры и перемешивают в течение ночи. Реакционную смесь выливают на лед (1,0 кг) и нейтрализуют до рН 9 твердым NaOH, экстрагируют эфиром. Объединенные экстракты сушат над безводным Nа2SO4. Растворитель удаляют и остаток перегоняют при пониженном давлении, получая 37,83 г (53%) смеси 3-нитролутидина 10 и 5-нитролутидина 9. Дополнительное разделение с помощью перегонки дает чистый 3-нитролутидин 10. 1Н-ЯМР (CDC13)

Смесь 3-нитролутидина 10 (760 мг, 5 ммоль) и диоксида селена (555 мг, 5 ммоль) в 15 мл диоксана кипятят в течение 14 часов в атмосфере N2, добавляют дополнительно SеO2 (555 мг, 5 ммоль). Реакционную смесь кипятят с обратным холодильником еще 8 часов, фильтруют через целит. Растворитель удаляют при пониженном давлении и выделяют остаток флэш-хроматотрафией на ситикагеле (гексан:ЕtOАс=2:1), получая 357 мг (43%) альдегида 11. 1Н-ЯМР (CDC13)

Смесь альдегида 11 (3,110 г, 18,73 ммоль) и тиосемикарбазида (2,65 г, 29,08 ммоль) в 70%-ном этаноле перемешивают при комнатной температуре в течение 8 часов, фильтруют, промывают Н2O, C2H5OH, диэтиловым эфиром и сушат в вакууме, получая 4,12 г (92%) гидразона 27. 1Н-ЯМР (ДМСО-d6)

К 2-гидрокси-3-нитро-4-метилпиридину 24 (3,08 г, 20 ммоль) и 4-диметиламинопиридину (2,44 г, 20 ммоль), растворенным в 5 мл CH2Cl2, медленно добавляют ангидрид трифторметансульфокислоты (5,7 г, 21 ммоль) при 0oС. Реакционную смесь перемешивают при 0oС в течение ночи, затем разбавляют 200 мл CH2Cl2 с последующим промыванием водой и насыщенным солевым раствором, сушат над МgSO4. Сырое соединение после удаления растворителя хроматографируют на колонке с силикагелем, используя 50%-ный этилацетат в гексане, получая 4,95 г целевого соединения 25 (87%). 1Н-ЯМР (ДМСО-d6)

Смесь трифлата (соль трифторметансульфокислоты) 2-гидрокси-3-нитро-4-метилпиридина 25 (7,74 г, 27,06 ммоль), трибутилвинилолова (10,3 г, 32,47 ммоль) и тетракис(трифенилфосфин)палладия (0) (1,56 г, 1,35 ммоль) в 100 мл безводного толуола нагревают при кипении с обратным холодильником в течение 3 часов, затем охлаждают до комнатной температуры и гасят реакцию, добавляя 20 мл насыщенного солевого раствора. Затем смесь экстрагируют этилацетатом (3х100 мл) и объединенные органические слои сушат над MgSO4. Сырой продукт после упаривания растворителя очищают колоночной хроматографией на силикагеле (гексан: этилацетат= 5:3), получая 2,82 г целевого соединения 26 (выход 70%). 1Н-ЯМР (ДМСО-d6)

Раствор олефина 26 (4,03 г, 24,54 ммоль) в 100 мл метанола подвергают озонолизу при -78oС и реакцию контролируют с помощью ТСХ. После завершения реакции избыток О3 удаляют, барботируя через реакционную смесь О2 при -78oС в течение 5 минут. Реакцию гасят (при -78oС) Me2S (10 мл) и полученную реакционную смесь перемешивают при комнатной температуре в течение ночи. Растворитель упаривают и остаток очищают хроматографией на силикагеле (гексаны: ЕtOАс=4:1 до гексаны: ЕtOАс=2:1), получая 3,51 г (96%) альдегида 11. Синтез соединения 14 (3-АМР) из гидразонового соединения 27
Способ 1. К раствору SnC12


Формула изобретения

где R1 представляет NO2, NH2, NHP, NPP', N3 или CO2R2;
Р и Р' представляют защитные группы;
R2 представляет метил, этил, пропил или изопропил;
R4 представляет Н или СН3,
включающий реакцию винилирования соединения формулы

где R представляет Cl, Br, I, -O-S(О2)-СН3, -O-S(O2)-СF3 или -O-S(O2)-С6Н4-СН3-пара;
R1, R2, R4, Р и Р' определены выше, с получением соединения формулы

где R1, R2, R4, P и Р' определены выше;
R3 представляет H, C1-C20алкил, арил, замещенный арил или CO2R2;
с последующим озонолизом полученного соединения 2-VP с получением соединения 2-С. 2. Способ по п.1, в котором R представляет Сl, Вr или I и R1 представляет NO2. 3. Способ по п.1, в котором R3 представляет Н. 4. Способ по п.1, в котором R3 представляет фенильную группу. 5. Способ по п.1, в котором R4 представляет Н. 6. Способ по п.1, в котором R4 представляет СН3. 7. Способ по п.1, в котором R1 представляет NO2. 8. Способ по п.1, в котором R1 представляет NH2. 9. Способ по п.1, в котором R представляет -O-S(O2)-СН3, -O-S(O2)-С6Н4-СН3-пара или -O-S(O2)-СF3. 10. Способ получения тиосемикарбазонов пиридин-2-карбоксальдегидов формулы

где R4 представляет Н или СН3,
включающий взаимодействие соединения формулы

с тиосемикарбазидом с получением тиосемикарбазона формулы TS1

с последующим восстановлением полученного соединения TS1 для восстановления нитрогруппы до аминогруппы. 11. Способ по п.10, в котором R4 представляет Н. 12. Способ по п.10, в котором R4 представляет СН3. 13. Способ по п. 10, в котором указанную стадию восстановления осуществляют в присутствии дихлорида олова. 14. Способ по п. 10, в котором указанную стадию восстановления осуществляют в присутствии сульфида натрия. 15. Способ получения тиосемикарбазона формулы

где R4 представляет Н или СН3;
Р представляет защитную группу,
включающий взаимодействие соединения формулы

с тиосемикарбазидом с получением указанного выше тиосемикарбазона. 16. Способ по п.15, в котором R4 представляет Н. 17. Способ по п.15, в котором R4 представляет СН3. 18. Способ по п.15, в котором указанная защитная группа Р представляет -С(=O)O-С(СН3)3. 19. Способ получения соединения формулы 4

включающий взаимодействие соединения формулы 3:

с диметилформамид-диалкилацеталем с образованием соединения формулы 3а

и последующее взаимодействие соединения 3а с окисляющим агентом с образованием соединения 4, при этом указанное соединение 4 выделяют по крайней мере с 75%-ным выходом из расчета на указанное соединение 3. 20. Способ по п.19, в котором указанный диметилформамид-диалкилацеталь представляет диметилформамид-диметилацеталь,
21. Способ по п.19, в котором указанный окисляющий агент представляет периодат натрия.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4