Новая кристаллическая модификация 5-фтор-1-(тетрагидро-2- фурил)-урацила и комплексные соединения на ее основе, обладающие противоопухолевым действием
Изобретение относится к новой кристаллической модификации 5-фтор-1-(тетрагидро-2-фурил)урацила, а также комплексным соединениям этой формы с 2,4-диоксо-6-метил-1,2,3,4-тетрагидропиримидином или экстрактом корня солодки (Radices Glycyrrhzae). Эта форма по своим характеристикам отличается от ранее известной модификации этого соединения и обладает повышенной противоопухолевой активностью и используется в медицине. Новая форма устойчива и может образовывать устойчивые молекулярные комплексы с биологически активными веществами, которые проявляют аналогичные свойства. Технический результат: более высокая активность и устойчивость полученных соединений. 2 с. и 8 з.п. ф-лы, 14 ил., 2 табл.
Область техники Изобретение относится к области онкологии, конкретно к полиморфным модификациям противораковых лекарственных средств и комплексным соединениям, обладающим синергическим противоопухолевым действием. Объектом изобретения является новая физически устойчивая кристаллическая модификация фторафура (МНН - тегафур) - 5-фтор-1-(тетрагидро-2-фурил)урацила, обладающая повышенной противоопухолевой активностью по сравнению с ранее известными модификациями, а также созданные на ее основе новые противораковые лекарственные вещества в виде устойчивых молекулярных комплексов.
Предшествующий уровень техники Известно значительное количество лекарственных веществ и их комбинаций, являющихся результатом всестороннего исследования и усовершенствования противоопухолевых веществ. В клинической практике применяются эффективные в отношении злокачественных новообразований химиотерапевтические вещества. Хотя результаты такой терапии в последние годы существенно улучшились, следует отметить, что эффективность во многих случаях остается незначительной или недостаточной для достижения нужной степени подавления роста опухоли и существенного продления срока жизни больных. Кроме этого, большинство противоопухолевых препаратов характеризуются высокой токсичностью, что негативно сказывается на лечебном процессе. Фторафур - 5-фтор-1-(тетрагидро-2-фурил)урацил (МНН - тегафур), синтезированный С.А. Гиллером с соавторами (патент США 1168391) в качестве предшественника 5-фторурацила (далее 5-FU), является эффективным противоопухолевым препаратом и широко используется в лечении различных опухолей, в частности желудочно-кишечного тракта и молочной железы. Поскольку тегафур является достаточно токсичным соединением неоднократно предпринимались попытки снизить его токсичность и/или повысить эффективность. Тегафур фармакопейный (соответствующий ФС 42-1182-86) характеризуется на порошковой дифрактограмме следующими межплоскостными расстояниями d и относительной интенсивностью рефлексов I: d,
4,677 - 90
4,522 - 100
4,139 - 13
4,085 - 48
4,013 - 24
3,949 - 48
3,715 - 17
3,620 - 26
3,572 - 75
3,450 - 86
3,248 - 32
3,131 - 84
2,907 - 25
2,842 - 17
2,798 - 34
2,328 - 17
2,308 - 15
2,171 - 19
1,748 - 71
Кривая ДСК фармакопейного тегафура, показанная на фиг. 7, представляет собой два эндотермических эффекта. Первый, широкий эффект в диапазоне 84,8-128,1oС и второй - эффект плавления в диапазоне 172,3-192,0oС. УФ-спектр приведен на фиг.11. В частности, на протяжении многих лет предпринимались попытки модернизировать саму молекулу тегафура. Так в патенте Бельгии 855121 описаны оптически активные изомеры (2'R- и 2'S-) тегафура, являющегося в химическом отношении рацематом. Однако исследования, проведенные различными группами ученых (например, Yasumoto M. et al. "J. Med. Chem.", 1977, vol.20, 12, 1592-1594 или Horwitz J.P. et al. "Cancer Res.", 20, 1975, vol.35, 1301-1304), показали, что биологическая активность обоих изомеров практически одинакова и не отличается от активности рацемата. Токсичность того или иного изомера также не обнаруживает существенных отличий по сравнению с исходной субстанцией. Кроме того, были получены и исследованы четыре полиморфные формы тегафура (Uchida Т. et al. "Chem. Pharm. Bull.", vol. 41, 9, 1632-1635). После обработки исходного тегафура (соответствующего JP XII) были выделены









Задачей изобретения является создание физически устойчивой формы тегафура, обладающей повышенной фармакологической активностью. В результате экспериментов было неожиданно обнаружено, что повышенной специфической активностью наряду с физической устойчивостью в течение длительного промежутка времени, достаточного для коммерческого использования, обладает новая, ранее неизвестная, метастабильная кристаллическая модификация тегафура (далее упоминается как форма V). Новая форма V представляет собой легкий, "воздушный" белый порошок. Форма V характеризуется на порошковой дифрактограмме следующими межплоскостными расстояниями d и относительной интенсивностью рефлексов I:
d,

9,035 - 63
7,237 - 23
6,149 - 19
5,839 - 100
5,413 - 17
4,704 - 42
4,551 - 62
4,104 - 36
4,041 - 28
3,966 - 25
3,730 - 20
3,626 - 25
3,588 - 42
3,473 - 60
3,437 - 50
3,255 - 30
3,143 - 36
2,915 - 23
2,382 - 16
2,336 - 20
Проведенный термический анализ выявил у новой формы три выраженных эндотермических пика на кривой ДСК. Первый типа








d,

9,090 - 19
7,234 - 32
6,883 - 100
5,864 - 13
4,831 - 27
4,571 - 13
4,197 - 25
3,627 - 15
3,448 - 18
3,254 - 26
3,192 - 13
3,149 - 6
2,933 - 13
2,448 - 8
2,300 - 8
Кривая ДСК соединения 1а представлена на фиг. 8. Она представляет собой два эндотермических эффекта. Первый эффект типа




d,

7,187 - 53
6,841 - 100
4,806 - 41
4,181 - 37
3,669 - 20
3,474 - 21
Комплекс тегафур-экстракт корня солодки (комплексное соединение 2) является рентгеноаморфной формой и представляет собой легкий комкующийся порошок желтого цвета с буроватым оттенком. Кривая ДСК соединения 2, показанная на фиг. 9, представляет собой совокупность двух эндотермических эффектов: широкий - в интервале 98,2-125,0oС и второй эффект, сопровождающийся разложением вещества, в интервале 125,0-171oC. УФ-спектр соединения 2, подтверждающий индивидуальность вещества, представлен на фиг. 13. Форма V превосходит по растворимости ранее известные модификации тегафура. Кроме того, новая форма тегафура по сравнению с ранее известными полиморфными формами обладает повышенной специфической активностью. Комплексные соединения проявляют еще более значительную специфическую активность (по сравнению не только с фармакопейным тегафуром, но и по сравнению с новой формой V), т.е. имеет место потенцирование фармакологического действия. Полученная новая кристаллическая модификация тегафура и комплексные соединения на ее основе могут найти широкое применение в медицине для лечения онкологических заболеваний. Это позволит расширить арсенал средств, воздействующих на опухолевые клетки, и соответственно повысить эффективность лечения больных, страдающих от злокачественных новообразований. Краткое описание рисунков
Фиг.1 - порошковая рентгенограмма заявляемой формы V тегафура. Фиг.2 - порошковая рентгенограмма фармакопейного тегафура. Фиг. 3 - порошковая рентгенограмма молекулярного комплекса тегафур-метилурацил в соотношении 1:2. Фиг. 4 - порошковая рентгенограмма молекулярного комплекса тегафур-метилурацил в соотношении 1:1. Фиг. 5 - порошковая рентгенограмма комплексного соединения тегафур-экстракт корня солодки. Фиг.6 - кривая ДСК заявляемой формы V тегафура. Фиг.7 - кривая ДСК фармакопейного тегафура. Фиг. 8 - кривая ДСК молекулярного комплекса тегафур-метилурацил в соотношении 1:2. Фиг. 9 - кривая ДСК комплексного соединения тегафур-экстракт корня солодки. Фиг.10 - УФ-спектр заявляемой формы V тегафура. Фиг.11 - УФ-спектр фармакопейного тегафура. Фиг. 12 - УФ-спектр молекулярного комплекса тегафур-метилурацил в соотношении 1:2. Фиг. 13 - УФ-спектр комплексного соединения тегафур-экстракт корня солодки. Фиг.14 - результаты изучения специфической активности фармакопейного тегафура, формы V тегафура, комплексного соединения 1а и комплексного соединения 2. Примеры: Лучший вариант осуществления изобретения
1. Получение формы V тегафура. Получение кристаллической модификации тегафура по данному изобретению осуществляют следующим образом. При температуре 45oС готовят насыщенный раствор исходного компонента фармакопейного тегафура (соответствует ФС 42-1182-86) в воде. Полученный раствор в объеме 0,5 л диспергируют в емкость с хлороформом, предварительно охлажденным до 2oС. Объем хлороформа составляет 0,4 л. Суспензии дают отстояться, хлороформный слой с осадком отделяют, осадок отфильтровывают, удаляют остаток растворителя при пониженном давлении (10-1мм рт.ст.) и получают конечный продукт. Выход формы V тегафура составляет 62% от исходной фармакопейной субстанции. 2. Получение комплекса тегафур-метилурацил (1:2). При температуре 100oС готовят 0,5 л 0,1 М раствора формы V тегафура в воде и 0,5 л 0,2 М раствора Betamecil в воде. Полученные растворы осторожно смешивают и оставляют в термостате при температуре 60oС на 1,5 часа. Затем раствор охлаждают до 2oС, выпавший осадок отфильтровывают, сушат при пониженном давлении (10-1 мм рт.ст.) и получают конечный продукт. Выход составляет 71%. 3. Получение комплекса тегафур-метилурацил (1:1). При температуре 100oС готовят 0,5 л 0,2 М раствора формы V тегафура в воде и 0,5 л 0,2 М раствора метилурацила в воде. Полученные растворы осторожно смешивают и оставляют в термостате при температуре 60oС на 3 часа. Затем раствор охлаждают до 2oС, выпавший осадок отфильтровывают, сушат при пониженном давлении (10-1мм рт.ст.) и получают конечный продукт. Выход составляет 68%. 4. Получение комплекса тегафура и смеси органических составляющих экстракта корня солодки. В качестве лиганда используют сухой экстракт корня солодки (Radices Glycyrrhizae) (С. И. Успенская и др. Российский химический журнал, 1997, т. 41, 5, с. 124-129). Сухой экстракт представляет собой аморфный пористый гигроскопичный порошок характерного цвета со специфическим запахом. При хранении порошок может комковаться но при встряхивании комки легко разрушаются. Экстракт хорошо растворим в воде с образованием опалесцирующих растворов. Содержание глицирризиновой кислоты в сухом экстракте корня солодки 20,12%. При температуре 40oС растворяют в 0,25 л воды 10 г формы V тегафура, а в другом сосуде при той же температуре в 0,1 л воды растворяют 5 г сухого экстракта корня солодки. Полученные растворы смешивают и оставляют в термостате при температуре 40oС в течение 30 минут. Затем раствор быстро охлаждают до 2oС, выпавший осадок отфильтровывают, сушат и получают конечный продукт. Выход составляет 75%. Полученную новую модификацию тегафура и комплексные соединения на ее основе исследовали методом порошковой дифракционной рентгенографии. Рентгенофазовый анализ проводили на автоматизированном порошковом дифрактометре. Условия съемки: излучение CuK







Определение растворимости исследуемых препаратов и тегафура
Определение растворимости проводили в соответствии с требованиями статьи "Solubility", USPXXIII (1995, р. 2071). Как видно из данных, приведенных в табл. 1, растворимость заявляемых препаратов: формы V тегафура, комплексного соединения 1а и 1b выше, чем у тегафура фармакопейного, растворимость комплексного соединения 2 не удалось определить из-за растительного компонента - экстракта корня солодки, образующего мутноватые, опалесцирующие растворы. Определение специфической активности - цитотоксичности образцов заявляемых препаратов по сравнению с тегафуром фармакопейным на культуре клеток рака шейки матки
Определение проводили по методике (Mosmami N.T. J. Immunoloey Methods, 1983, vol.65, 55-63, Carmichael J. et al. Cancer Res, 1987, vol.47, 936-946) на культуре клеток рака шейки матки, клетки выращивались при 37o С на среде RPMI 1640 с добавками 10% эмбриональной сыворотки коров и 200 ед/мл гентамицина, содержание СО2 в атмосфере инкубатора составляло 10%. Клетки, находящиеся в экспоненциальной фазе роста, суспендировали трипсином и в количестве 4x103 высевали в каждую лунку 96-луночного планшета для монослойных культур. Растворы образцов исследуемых препаратов готовили, растворяя по 23 мг каждого препарата в 10 мл культуральной жидкости, получая таким образом растворы концентрации 10-2М. Эти растворы служили исходными для получения из них растворов меньшей концентрации путем разведения их культуральной жидкостью. Перед непосредственным добавлением растворов к клеткам их стерилизовали фильтрацией через миллипоровские фильтры. Через сутки после высева клеток в каждую лунку планшета добавляли растворы образцов исследуемых препаратов в заданных концентрациях, после чего клетки росли еще в течение 4 суток. Всего было испытано по 9 концентраций каждого из 4 образцов исследуемых препаратов. Количественная оценка цитотоксичности исследуемых препаратов проводилась с использованием 3-(4,5-диметилтазол-2-ил)-2,5-дифенилтетразолийбромида (МТТ). МТТ обладает избирательной способностью метаболизироваться в митохондриях клеток с образованием окрашенного продукта формазана, обладающего максимумом поглощения при длине волны 530-570 нм, при этом имеется корреляция между степенью ингибирования митохондрий и окраской клеток. В каждую лунку планшета добавляли по 0,5 мг/мл за 4 часа до окончания культивирования клеток. После окончания инкубации культуральной жидкость из лунок удаляли, кристаллы формазана растворяли и клетки сканировали на автоматическом ридере Multiscan MCC/340P при длине волны 540 нм. Результаты рассчитывали в процентах поглощения клеток при 540 нм, подвергшихся действию исследуемых препаратов, по отношению к поглощению контрольных клеток. Действие каждой концентрации исследуемых препаратов на раковые клетки оценивали по результатам 4-6 независимых экспериментов, результаты обрабатывали с помощью методов математической статистики. Данные полученных исследований приведены в табл. 2 и на фиг. 14. Как видно из данных табл. 2 и графика, приведенного на фиг. 14, все исследуемые препараты оказывают разное цитотоксическое действие на раковые клетки. Однако заявляемые препараты, а именно форма V тегафура, а также комплексные соединения 1а и 2 существенно превосходят тегафур по показателю влияния на пролиферацию раковых клеток. Так, тегафур в диапазоне концентраций 10-6-10-4M не оказывает влияния на пролиферацию раковых клеток. Форма V тегафура угнетает пролиферацию клеток при концентрации 5

Формула изобретения
d,

9,035 - 63
7,237 - 23
6,149 - 19
5,839 - 100
5,413 - 17
4,704 - 42
4,551 - 62
4,104 - 36
4,041 - 28
3,966 - 25
3,730 - 20
3,626 - 25
3,588 - 42
3,473 - 60
3,437 - 50
3,255 - 30
3,143 - 36
2,915 - 23
2,382 - 16
2,336 - 20
2. Комплексное соединение, образованное 5-фтор-1-(тетрагидро-2-фурил)-урацилом по п.1 и 2,4-гдиоксо-6-метил-1,2,3,4-тетрагидропиримидином или экстрактом корня солодки (Radices Glycyrrhizae). 3. Комплексное соединение по п.2, отличающееся тем, что 2,4-диоксо-6-метил-1,2,3,4-тетрагидропиримидин представляет собой Бетамецил. 4. Комплексное соединение по п.2, отличающееся тем, что лекарственные вещества представляют собой 5-фтор-1-(тетрагидро-2-фурил)-урацил и 2,4-диоксо-6-метил-1,2,3,4-тетрагидропиримидин при молярном соотношении компонентов 1:2. 5. Комплексное соединение по п.4, отличающееся тем, что характеризуется на порошковой дифрактограмме следующими межплоскостными расстояниями d и относительной интенсивностью рефлексов I:
d,

9,090 - 19
7,234 - 32
6,883 - 100
5,864 - 13
4,831 - 27
4,571 - 13
4,197 - 25
3,627 - 15
3,448 - 18
3,254 - 26
3,192 - 13
3,149 - 6
2,933 - 13
2,448 - 8
2,300 - 8
6. Комплексное соединение по п.2, отличающееся тем, что лекарственные вещества представляют собой 5-фтор-1-(тетрагидро-2-фурил)-урацил и 2,4-диоксо-6-метил-1,2,3,4-тетрагидропиримидин при молярном соотношении компонентов 1:1
7. Комплексное соединение по п.6, отличающееся тем, что характеризуется
на порошковой дифрактограмме следующими межплоскостными расстояниями d и относительной интенсивностью рефлексов I:
d,

7,187 - 53
6,841 - 100
4,806 - 41
4,181 - 37
3,669 - 20
3,474 - 21
8. Комплексное соединение по п.2, отличающееся тем, что лекарственные вещества представляют собой 5-фтор-1-(тетрагидро-2-фурил)-урацил и экстракт корня солодки (Radices Glycyrrhizae) в соотношении 1:1 - 4:1 (по массе). 9. Комплексное соединение по п.8, отличающееся тем, что лекарственные вещества представляют собой 5-фтор-1-(тетрагидро-2-фурил)-урацил и экстракт корня солодки в соотношении 2:1 (по массе). 10. Комплексное соединение по п.9, отличающееся тем, что на порошковой дифрактограмме отсутствуют выраженные рефлексы, присущие кристаллическим формам.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение
Дата, с которой действие патента восстановлено: 10.11.2007
Извещение опубликовано: 10.11.2007 БИ: 31/2007