Способ плазменной обработки материалов, способ генерации плазмы и устройство для плазменной обработки материалов
Изобретение относится к плазменной технике и плазменной технологии обработки материалов, а более конкретно - к методам обработки поверхностей изделий при помощи газовых разрядов высокого давления. Способ плазменной обработки материалов включает подачу потока рабочего газа в разрядный промежуток и зажигание электрического разряда с помощью протяженного разрядного электрода, расположенного напротив обрабатываемой поверхности. На электрод подают циклически изменяющееся напряжение для поддержания протяженного разряда при атмосферном давлении. Генерацию плазмы осуществляют при подаче потока газа под углом 10 - 60o к продольной оси или плоскости симметрии протяженного электрода в направлении к обрабатываемой поверхности. При этом газ подают равномерно вдоль протяженного разрядного электрода. Газораспределитель устройства для обработки материалов содержит корпус из диэлектрического материала, в котором выполнены наклонные каналы для подачи газа. Выходные отверстия каналов равномерно расположены на корпусе газораспределителя напротив протяженного разрядного электрода вдоль его длины. Технический результат - изобретение позволяет осуществлять процесс модификации свойств обрабатываемого материала с высокой степенью равномерности по его поверхности как при изменении состава рабочего газа, так и при изменении параметров разряда. 3 с. и 17 з.п.ф-лы, 10 ил.
Область техники Изобретение относится к плазменной технике и плазменной технологии обработки материалов, а более конкретно - к методам обработки поверхностей изделий при помощи газовых разрядов высокого давления для изменения поверхностной энергии материалов: для повышения гидрофильности или гидрофобности обрабатываемой поверхности, для улучшения ее адгезионных и антикоррозионных свойств.
Предшествующий уровень техники В настоящее время широко используются различные способы и средства для обработки материалов в плазме коронного разряда при атмосферном давлении. Так, например, из патента US 5895558 (МПК H 05 F 3/00, опубликован 20.04.1999) известно устройство и способ для обработки полимерной пленки в плазме электрического разряда при атмосферном давлении. Известное устройство включает в свой состав охлаждаемые электроды, расположенные напротив друг друга, которые подключаются к источнику ВЧ-напряжения. Частота питающего напряжения составляет от 1 до 30 МГц. Нижний электрод отделен от разрядного промежутка барьерным слоем диэлектрика. В процессе обработки материала разрядный объем заполняется рабочим газом при атмосферном давлении через отверстия, выполненные в торцевых частях электродов. При этом поток рабочего газа подается ортогонально поверхности обрабатываемого материала и образует турбулентную зону в разрядном промежутке. После зажигания разряда между электродами разрядный промежуток между катодом и диэлектрическим барьерным слоем, расположенным над поверхностью анода, заполняется плазмой ВЧ-разряда. Обработка полимерного материала осуществляется при его облучении электронами и отрицательными ионами, образующимися в плазме разряда, а также под воздействием ультрафиолетового излучения из плазмы разряда. Такой процесс обработки полимерного материала осуществляется при низкой температуре - температуре газа плазмы тлеющего разряда, что исключает возможную деструкцию материала. Из патента US 5403453 (МПК H 05 F 3/00, опубликован 04.04.1995) известен другой способ обработки материала (в виде пленки, тканого или нетканого материала) в плазме тлеющего разряда при атмосферном давлении рабочего газа. Такой способ и устройство, применяемое для его осуществления, используются для придания обрабатываемому материалу необходимых свойств: смачиваемость (гидрофильности или гидрофобности) и пористость. В состав устройства входят разрядные электроды, расположенные друг напротив друга, и металлический перфорированный заземленный электрод, установленный в разрядном объеме между разрядными электродами. Рабочие поверхности разрядных электродов и заземленного электрода покрыты барьерным слоем диэлектрика. Генерация плазмы в рабочем объеме осуществляется при подаче питающего напряжения с частотой от 1 до 100 кГц от ВЧ-источника напряжения и зажигании газового разряда между разрядными электродами. Обрабатываемый материал (ткань) перемещается через зону генерации плазмы между одним из разрядных электродов и перфорированным заземленным электродом. При перемещении обрабатываемого материала через разрядный объем происходит облучение поверхности материала заряженными частицами, посредством чего производится модификация свойств материала. В процессе обработки осуществляется принудительная циркуляция рабочего газа вдоль поверхности ткани, перемещаемой через разрядный объем. Управление подачей газа и оптимизация частотного диапазона электропитания позволяет с помощью описанного выше устройства частично стабилизировать разряд в межэлектродном пространстве таким образом, чтобы плазма генерировалась вдоль всей поверхности обрабатываемого материала. В другом устройстве, описанном в патенте US 5215636 (МПК H 01 J 19/08, опубликован 01.06.1993), разрядные электроды размещаются вдоль обрабатываемой поверхности, под которой устанавливается массивный заземленный электрод. Обработка материалов производится при перемещении протяженной ленты или трубы через разрядный объем, в котором осуществляется генерация плазмы при зажигании разряда с частотой ~500 кГц. Улучшение смачиваемости и адгезионной способности обрабатываемой поверхности достигается за счет ее облучения интенсивным ультрафиолетовым излучением или иным электромагнитным излучением, а также за счет бомбардировки поверхности электронами, ионами и радикалами из разрядного объема. Стабилизация электрического разряда вдоль всей поверхности обрабатываемого материала при реализации известного способа осуществляется посредством равномерного распределения потока рабочего газа по всей обрабатываемой поверхности. Газораспределитель в таком устройстве может устанавливаться непосредственно над обрабатываемой поверхностью между разрядными электродами. Выходные каналы такого газораспределителя ориентированы ортогонально обрабатываемой поверхности и, соответственно, поверхности заземленного электрода, размещенного под лентой обрабатываемого диэлектрического материла. При этом электрический разряд зажигают вдоль обрабатываемой поверхности. Наиболее близкими аналогами (прототипами) для патентуемого способа плазменной обработки материалов, способа генерации плазмы и устройства для обработки материалов являются соответствующие способы и устройство, описанные в патенте US 5026463 (МПК B 05 D 3/14, опубликован 25.06.1991). Устройство, предназначенное для осуществления обработки тонкого ленточного материала в плазме коронного разряда при атмосферном давлении, включает в свой состав, по меньшей мере, один протяженный разрядный электрод, который установлен над обрабатываемой поверхностью материала и соразмерен с шириной ленты. Под обрабатываемой лентой или образцом материала устанавливается массивное заземленное тело с барьерным слоем диэлектрика. В качестве такого тела может использоваться, например, металлический барабан с диэлектрическим покрытием для перемотки ленты. На разрядный электрод подается напряжение величиной от 20 до 70 кВ с частотой от 20 до 25 кГц, в результате чего зажигается коронный разряд в среде рабочего газа. Подача рабочего газа осуществляется с помощью специального газораспределителя, сообщенного с системой подачи газа. При этом выходные каналы газораспределителя направлены ортогонально по отношению к обрабатываемой поверхности и перпендикулярно по отношению к стержневым разрядным электродам. Данное выполнение газораспределителя позволяет равномерно распределять рабочий газ вдоль длины разрядных электродов и соответственно по всей ширине обрабатываемой ленты, что совместно с выбранными оптимальными электрическими параметрами позволяет поддерживать коронный разряд, равномерно распределенный по обрабатываемой поверхности материала. Модификация свойств материала производится путем облучения обрабатываемой поверхности заряженными частицами совместно с химической модификацией посредством воздействия на поверхность функционально активными группами и радикалами при подаче химически активных газов через газораспределитель. В результате воздействия на исходный обрабатываемый материал происходит его полимеризация и повышение плотности сшивки полимеров. Однако использование описанного выше способа генерации плазмы, способа плазменной обработки и устройства для обработки материалов не позволяет достичь высокой степени равномерности плотности плазмы вдоль ширины обрабатываемой ленты и стабильности разряда при атмосферном давлении. При этом сохраняется достаточно высокая вероятность того, что коронный разряд может локализоваться над частью обрабатываемой ленты. Данное явление, в свою очередь, приводит к неравномерности свойств материала по его поверхности, т.е. к дефекту обрабатываемого материала. Кроме того, осуществление известного способа обработки предусматривает поддержание напряжения электропитания и его частоты в достаточно узких диапазонах, в которых обеспечивается стабильное горение разряда. Сущность изобретения В основу патентуемой группы изобретений, связанных между собой настолько, что они образуют единый изобретательский замысел, положена техническая задача по созданию протяженного разряда при атмосферном давлении рабочей среды и широком диапазоне рабочих частот, который обладает высокой стабильностью и равномерностью вдоль разрядного электрода. Решение такой задачи позволяет осуществлять процесс модификации свойств обрабатываемого материала с высокой степенью равномерности по его поверхности, как при изменении состава рабочего газа, так и при изменении параметров разряда. Данное преимущество обеспечивает повышение качества обработки материалов и расширение функциональных возможностей по изменению свойств материала в процессе непрерывного промышленного производства. Достижение указанного технического результата обеспечивается при использовании способа плазменной обработки материалов при атмосферном давлении, включающего подачу потока рабочего газа в разрядный промежуток со стороны разрядного электрода при внешнем атмосферном давлении, зажигание электрического разряда с помощью, по меньшей мере, одного протяженного электрода, расположенного напротив обрабатываемой поверхности, на который подают циклически изменяющееся напряжение, и поддержание протяженного разряда при атмосферном давлении для генерации плазмы в процессе обработки материала. Согласно настоящему изобретению генерацию плазмы осуществляют при подаче газового потока под углом от 10o до 60o к оси или плоскости симметрии протяженного электрода. Газ подают равномерно вдоль поверхности протяженного электрода в направлении к обрабатываемой поверхности. При этом протяженный разрядный электрод может быть выполнен в виде металлического стержня или предпочтительно в виде металлической струны. В этом случае подачу газового потока осуществляют под углом к оси симметрии электрода. Если протяженный разрядный электрод выполняется, например, в виде металлической ленты, подача газового потока производится под углом к горизонтальной плоскости симметрии электрода. Создание потока рабочего газа, продуваемого через разрядный объем, с определенным соотношением продольной и поперечной составляющих скорости потока относительно поверхности протяженного разрядного электрода способствует организации пространственно однородной разрядной области плазмы, которая генерируется вдоль всей длины протяженного разрядного электрода. Такое пространственно однородное стабильное плазменное образование, расположенное поперек ленты обрабатываемого материала, протягиваемого через разрядный объем, обеспечивает равномерное воздействие на обрабатываемую поверхность и, следовательно, высокое качество обработки материала. Для зажигания электрического разряда преимущественно используется, по меньшей мере, один поджигной электрод, на который подается импульсное напряжение. Электрический разряд при атмосферном давлении можно зажигать между протяженным разрядным электродом и заземленным электродом, устанавливаемым под подложкой обрабатываемого диэлектрического материала. Зажигание и поддержание электрического разряда может осуществляться без использования дополнительного заземленного электрода. Достижение указанного выше технического результата обеспечивается также с помощью способа генерации плазмы при атмосферном давлении, включающего подачу потока рабочего газа в разрядный промежуток со стороны разрядного электрода, зажигание электрического разряда с помощью, по меньшей мере, одного протяженного разрядного электрода, на который подают циклически изменяющееся напряжение, и поддержание протяженного разряда при атмосферном давлении. Согласно настоящему изобретению генерацию плазмы осуществляют при подаче газового потока под углом от 10o до 60o к оси или плоскости симметрии протяженного электрода, причем газ подают равномерно вдоль поверхности протяженного разрядного электрода. Протяженный разрядный электрод может быть выполнен в виде металлического стержня или предпочтительно в виде металлической струны. В этом случае подачу газового потока осуществляют под углом к оси симметрии электрода. Если протяженный разрядный электрод выполняется, например, в виде металлической ленты, подача газового потока производится под углом к горизонтальной плоскости симметрии электрода. Технический результат достигается также с помощью устройства для плазменной обработки материалов при атмосферном давлении, которое содержит, по меньшей мере, один протяженный разрядный электрод с выводами для подключения к системе электропитания, газораспределитель, обеспечивающий продув потока рабочего газа вдоль протяженного разрядного электрода, расположенного напротив обрабатываемой поверхности, и систему подачи обрабатываемого материала в разрядный объем. Согласно настоящему изобретению газораспределитель содержит корпус из диэлектрического материала, в котором выполнены наклонные каналы для подачи газа, выходные отверстия которых расположены напротив поверхности разрядного электрода, при этом наклонные каналы ориентированы под углом от 10o до 60o к продольной оси или плоскости симметрии протяженного разрядного электрода в направлении к обрабатываемой поверхности и равномерно расположены по поверхности корпуса газораспределителя вдоль длины протяженного разрядного электрода. Предпочтительно выполнение наклонных каналов для подачи газа в форме сопел Лаваля. Данное конструктивное выполнение позволяет увеличить поперечный размер области пространственно однородной плазмы над обрабатываемой поверхностью за счет увеличения расстояния направленной подачи рабочего газа. Для облегчения условий зажигания пространственно протяженного разряда и упрощения системы электропитания устройство содержит, по меньшей мере, один поджигной электрод, установленный вблизи протяженного разрядного электрода. В состав устройства может входить система подачи обрабатываемого материала в виде ленты, перемещаемой через разрядный объем с помощью перемоточных барабанов. При ленточной подаче обрабатываемого материала синхронно с протяжкой ленты может производиться дополнительная обработка: облучение поверхности ленты с помощью источника ультрафиолетового излучения и/или обдув ленты химически активным газом. Источник излучения и система подачи газа устанавливаются над перемещаемой лентой. В случае обработки плоской подложки, выполненной из обрабатываемого материала, система подачи обрабатываемого материала в разрядный объем может быть снабжена, по меньшей мере, одним узлом возвратно-поступательного перемещения подложки относительно протяженного разрядного электрода. Протяженный разрядный электрод может быть выполнен в виде металлического стержня. В предпочтительном варианте выполнения протяженный разрядный электрод выполняется в виде металлической струны с натяжной пружиной. Кроме того, возможно выполнение протяженного разрядного электрода в виде металлической ленты. В последнем случае наклонные каналы ориентированы под углом от 10o до 60o к продольной горизонтальной плоскости симметрии ленточного разрядного электрода. Для улучшения пространственной организации однородной разрядной плазмы может использоваться, по меньшей мере, один металлический заземленный электрод, установленный под подложкой или лентой обрабатываемого материала. При таком выполнении протяженный разряд зажигается между одним или несколькими разрядными электродами и заземленным электродом. Сведения, подтверждающие возможность осуществления изобретения Далее группа патентуемых изобретений поясняется описанием конкретных примеров реализации и прилагаемыми чертежами, на которых изображено следующее: на фиг. 1 схематично изображен продольный разрез газораспределителя с протяженным разрядным электродом и одним поджигным электродом; на фиг. 2 схематично изображен продольный разрез газораспределителя с протяженным разрядным электродом и семью поджигными электродами; на фиг. 3 схематично изображено устройство для плазменной обработки материалов с узлом возвратно-поступательного перемещения подложки; на фиг. 4 схематично изображено устройство для плазменной обработки материалов с системой перемещения ленты через разрядный объем; на фиг.5 - графическая зависимость краевого угла (угла смачивания)
на фиг.6 - графическая зависимость краевого угла (угла смачивания)

на фиг.7 - графическая зависимость краевого угла (угла смачивания)

на фиг.8 - графическая зависимость краевого угла (угла смачивания)

на фиг.9 - графическая зависимость краевого угла (угла смачивания)

на фиг.10 - графическая зависимость краевого угла (угла смачивания)

Изобретение может применяться в различных плазменных технологических процессах, в том числе для повышения гидрофильности или гидрофобности обрабатываемой поверхности, для улучшения ее адгезионных и антикоррозионных свойств. Способ и устройство для обработки материалов, а также способ генерации плазмы могут использоваться в промышленных установках для чистки, модификации и полировки поверхностей металлов и диэлектриков, а также для нанесения на них покрытий.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10