Способ получения криолита
Изобретение относится к области производства регенерационного криолита на алюминиевых заводах. Способ получения криолита включает смешение фторсодобикарбонатного раствора и алюминатного раствора в непрерывном режиме, кристаллизацию, обезвоживание и сушку криолита. Алюминатный раствор подают на смешение в зависимости от концентраций во фторсодобикарбонатном растворе гидрокарбоната натрия и фторида натрия, их соотношения, от расхода этого раствора и от концентрации оксида алюминия в алюминатном растворе. Данное изобретение позволяет повысить выход и качество продукта. 3 табл.
Изобретение относится к области производства регенерационного криолита на алюминиевых заводах. Получение регенерационного криолита на алюминиевых заводах основано на смешении газоочистных фторсодобикарбонатных растворов с раствором алюмината натрия.
Известен способ получения криолита из фторсодержащих содобикарбонатных растворов газоочистных сооружений путем осаждения раствором алюмината натрия при повышенной температуре, в котором процесс ведут при избытке фторида на 10-50% относительно стехиометрического количества, причем процесс ведут до остаточной концентрации бикарбоната натрия 5-10 г/л и при 30-95oС (А.с. СССР 415955, С 01 F 7/54, 1979г. [1]). Недостаток известного способа - низкое извлечение фтора (67-70%), невысокая производительность процесса. Известен способ получения криолита, включающий обработку газоочистного фторсодобикарбонатного раствора карбонатсодержащим соединением и алюминатным раствором с последующим отделением выделенного продукта, в котором обработку фторсодобикарбонатного раствора карбонатсодержащим соединением ведут до массового отношения карбоната натрия к бикарбонату натрия 0,1-0,9 (А.с. СССР 1090661, C 01 F 7/54, 1984г. [2]). По технической сущности, наличию сходных признаков данное решение принято в качестве ближайшего аналога. Недостатки известного решения: низкий выход фтора в криолит, необходимость предварительной подготовки (обработка СО2-содержащим газом) газоочистного фторсодобикарбонатного раствора, регулирование процесса осуществляется только по одному технологическому параметру, что для достижения высоких технико-экономических показателей недостаточно. Не осуществляется дозирование алюминатного раствора, важнейшего параметра процесса получения регенерационного криолита. Точность дозирования алюминатного раствора оказывает существенное влияние на процесс получения криолита. При избытке (передозировке) алюминатного раствора: - ухудшается химический состав криолита (снижается содержание фтора) вследствие образования тонкодисперсных фракций гидроалюмокарбоната натрия и гидроокиси алюминия; - за счет образования данных примесей ухудшаются физические свойства криолита: снижается скорость осветления и фильтрации криолитовой пульпы; увеличиваются потери криолита с верхним сливом криолитового сгустителя, что, в свою очередь, приводит к интенсивному зарастанию трубопроводов и газоочистных аппаратов криолитом. Недостаток (недодозировка) алюминатного раствора не позволяет связать в криолит максимально возможное количество фторида натрия из газоочистных растворов, что приводит: - к недополучению криолита; - к повышению концентрации фторида натрия в растворах, подаваемых на газоочистку, как следствие этого - к повышению концентрации фторида натрия в растворах, поступающих с газоочистки на кристаллизацию (варку) криолита, что также приводит к ухудшению физических свойств криолита (крупность, скорость отстаивания и фильтрации). Задачей предлагаемого изобретения является повышение выхода и качества продукта, повышение технико-экономических показателей процесса производства регенерационного криолита за счет более эффективного использования реагентов и снижения их безвозвратных потерь. Техническим результатом предлагаемой технологии является оптимизация дозировки алюминатного раствора, подаваемого на кристаллизацию криолита, с учетом соотношения концентрации гидрокарбоната натрия к фториду натрия во фторсодобикарбонатном растворе, величины концентраций этих компонентов во фторсодобикарбонатном растворе и в маточном растворе, величины концентрации оксида алюминия в алюминатном растворе. Указанный технический результат достигается тем, что в способе получения криолита, включающем смешение фторсодобикарбонатного раствора и алюминатного раствора, кристаллизацию, обезвоживание и сушку криолита, процесс ведут в непрерывном режиме, алюминатный раствор подают на смешение в зависимости от концентраций во фторсодобикарбонатном растворе гидрокарбоната натрия и фторида натрия, их соотношения, от расхода этого раствора, от концентрации оксида алюминия в алюминатном растворе и поддерживают расход алюминатного раствора, дмз/чac: при







CМNaF>8,

при


если СМNaНСО3<6, то

6



8<СNаНСО3


СМNаНСО3>10,

при


если СМNaНСО3


6<СNаНСО3


8<СNаНСО3


СМNаНСО3>10,

где QАl2О3 - расход подаваемого на кристаллизацию криолита алюминатного раствора, дм3/час;
VNaF - расход фторсодобикарбонатного раствора, подаваемого на кристаллизацию, м3/час;
СpNaF - концентрация фторида натрия во фторсодобикарбонатном растворе, подаваемом на кристаллизацию, г/дм3;
СpNaНСО3 - концентрация гидрокарбоната натрия во фторсодобикарбонатном растворе, подаваемом на кристаллизацию, г/дм5;
САl2О3 - концентрация оксида алюминия в алюминатном растворе, подаваемом на кристаллизацию, г/дм3;
СМNaF - остаточная концентрация фторида натрия в маточном растворе, г/дм3;
СМNаНСО3 - остаточная концентрация гидрокарбоната натрия в маточном растворе, г/дм3;





1000 - переводной коэффициент из м3 в дм3. Множитель (1+0,07) представляет собой доверительный интервал значений, в который с надежностью 95% укладываются результаты всех экспериментов. Наличие данного интервала обусловлено неточностями при замере и регулировке технологических параметров процесса варки криолита, погрешностями анализов растворов, а также колебанием модуля алюминатного раствора. Предлагаемое решение характеризуется следующими отличительными от ближайшего аналога признаками:
- процесс ведут в непрерывном режиме;
- расход алюминатного раствора поддерживают в зависимости от концентраций во фторсодобикарбонатном растворе гидрокарбоната натрия и фторида натрия, расхода этого раствора и от концентрации оксида алюминия в алюминатном растворе;
- в зависимости от соотношений концентраций во фторсодобикарбонатном растворе гидрокарбоната натрия и фторида натрия расход алюминатного раствора определяется по формулам с учетом остаточных концентраций в маточном растворе либо по гидрокарбонату натрия, либо по фториду натрия. Использование указанной совокупности отличительных признаков обеспечивает оперативное реагирование на скачки концентраций в газоочистном и маточном растворах, стабилизирует работу узла варки криолита в условиях нестационарного процесса за счет быстрого приведения системы к оптимальным технологическим параметрам. Таким образом, предлагаемое техническое решение соответствует критерию патентоспособности изобретения "новизна". Сравнение предлагаемого технического решения с ближайшим аналогом и другими известными решениями в данной области, выявленными в процессе поиска, показывает следующее:
- известен способ получения криолита, включающий обработку газоочистного фторсодобикарбонатного раствора карбонатсодержащим соединением и алюминатным раствором с последующим отделением выделенного продукта, в котором обработку фторсодобикарбонатного раствора карбонатсодержащим соединением ведут до массового отношения карбоната натрия к бикарбонату натрия 0,1-0,9 [2];
- известен способ получения криолита из фторсодержащих содобикарбонатных растворов газоочистных сооружений путем осаждения раствором алюмината натрия, при этом процесс ведут при избытке фторида на 10-50% относительно стехиометрического количества, до остаточной концентрации бикарбоната натрия 5-10 г/л [1];
- известен способ получения криолита, включающий обработку фторсодержащих газов щелочным раствором и его варку с получением пульпы криолита, отделение криолита от щелочного раствора и подачу раствора на обработку отходящих фторсодержащих газов, в котором часть щелочного насыщенного раствора после обработки газов смешивают с пульпой криолита при соотношении (0,1-4):1 (А.с. СССР 925866, C 01 F 7/54, 1982г. [3]). Предлагаемое решение характеризуется известными признаками:
- получение криолита смешением фторсодобикарбонатного раствора с алюминатным раствором, кристаллизацией, обезвоживанием и сушкой [1, 2, 3];
- ведение процесса до остаточной концентрации бикарбоната натрия 5-10 г/л [1] (частично в заявляемых интервалах). Предлагаемое решение характеризуется также не известными ранее признаками:
- расход алюминиевого раствора установлен в зависимости от величины остаточных концентраций в маточном растворе фторида натрия и гидрокарбоната натрия в различных пределах;
- расход алюминатного раствора установлен в зависимости от соотношения гидрокарбоната натрия к фториду натрия в фторсодобикарбонатном растворе в различных пределах. Таким образом, предлагаемое техническое решение характеризуется существенными отличительными признаками, позволяющими при их использовании получить более высокие технико-экономические показатели:
- стабилизация процесса;
- оперативная оптимизация технологических параметров процесса варки криолита;
- повышение извлечения алюминия и фтора во вторичный криолит, что свидетельствует о его соответствии критерию патентоспособности изобретения "изобретательский уровень". Примеры. Во всех примерах на постоянном уровне выдерживались следующие технологические параметры. 1. Количество фторсодобикарбонатного раствора на варку криолита 110 м3/час. 2. Концентрация Аl2О3 в алюминатном растворе 290г/дм3. 3. Содержание фтора в получаемом криолите 44%. 4. Извлечение фтора в криолит определяли по отношению количества фтора, фактически переведенного в криолит (по разности концентраций NaF в исходном и маточном растворах), к количеству фтора, которое может быть переведено в криолит при концентрации NaF в маточном растворе, равной 6 г/дм3. 5. В примерах сравниваются два варианта:
Вариант 1 - существующая дозировка алюминатного раствора;
Вариант 2 - предлагаемый способ дозировки.

В табл.1.1 рассмотрены случаи, когда концентрация NaF в маточном растворе СМNaF





- смешением растворов фторида натрия и бикарбоната натрия;
- разложением кремнефторида натрия содой, протекающим по реакции
Na2SiF6+4Na2СО3+2H2O=6NaF+4NaHCO3+SiO2
Фторсодобикарбонатный раствор при этом может иметь следующий состав, г/дм3: NaF - 10-40; Nа2СО3 - 3-12; NаНСО3 - 12-50. Применение предлагаемой технологии к различным технологическим схемам получениям криолита дают аналогичные положительные результаты. ИСТОЧНИКИ ИНФОРМАЦИИ
1. А.с. СССР 415955, C 01 F 7/54, 1979г. 2. А.с. СССР 1090661, C 01 F 7/54, 1984г. 3. А.с. СССР 925866, C 01 F 7/54, 1982г.
Формула изобретения
при


если СМNaF


5<СNaF<6,

6



СМNaF>8,

при


если СМNaHCO3<6, то

6



8<СNaHCO3


СМNaHCO3>10,

при


если СМNaHCO3


6<СNaHCO3


8<СNaHCO3


СМNaHCO3>10,

где QAl2O3 - расход подаваемого на кристаллизацию криолита алюминатного раствора, дм3/ч;
V NaF - расход фторсодобикарбонатного раствора, подаваемого на кристаллизацию, м3/ч;
СрNaF - концентрация фторида натрия во фторсодобикарбонатном растворе, подаваемом на кристаллизацию, г/дм3;
СрNaНСО3 - концентрация гидрокарбоната натрия во фторсодобикарбонатном растворе, подаваемом на кристаллизацию, г/дм3;
СAl2O3 - концентрация оксида алюминия в алюминатном растворе, подаваемом на кристаллизацию, г/дм3;
СМNaF - остаточная концентрация фторида натрия в маточном растворе, г/дм3;
СМNaНСО3 - остаточная концентрация гидрокарбоната натрия в маточном растворе, г/дм3;





1000 - переводной коэффициент из м3 в дм3;
(1

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4