Ионно-лучевой способ повышения износостойкости материала изделия
Изобретение может быть использовано для повышения износостойкости режущего инструмента, штамповой оснастки, деталей машин и механизмов. Изобретение направлено на увеличение срока службы изделий за счет повышения износостойкости его материала. Способ включает имплантацию ионов металла и/или неметалла, выбираемых из группы элементов, образующих твердые соединения путем создания в приповерхностной области материала изделия двухслойной структуры, первый слой которой образован при повышенной энергии (80-200 кэВ), а второй слой при пониженной энергии (20-80 кэВ) имплантируемых ионов, при этом второй слой формируют в виде прерывистых высокотвердых участков с помощью расположенной на обрабатываемом материале изделия сетки. Высокотвердые участки формируют в виде периодически расположенных полосок шириной 100-1000 мкм, периодически расположенных прямоугольников 100-1000 мкм. Формирование второго слоя осуществляют через сетку, материал которой состоит из элементов, образующих с имплантируемыми элементами твердые соединения. Расстояние между высокопрочными участками составляет 50 - 500 мкм. 4 з.п. ф-лы, 1 табл.
Предлагаемое изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в инструментальной промышленности для повышения износостойкости режущего инструмента, штамповой оснастки, деталей машин и механизмов.
Известен способ (заявка Франции 2476143, кл. С 23 С 14/48) ионно-лучевой обработки изделий, заключающийся в том, что в камеру, где располагаются изделия, напускают газ. Газ ионизируют и используют для обработки изделий. Ионы газа ускоряются за счет приложения переменной разности потенциала между изделиями и камерой. Технические возможности данного способа по созданию необходимой структуры и элементного состава в приповерхностном слое изделий ограничены тем, что при такой обработке в изделие имплантируют только ионы напускаемого газа. Создаваемые приповерхностные слои имеют сильные ограничения по значениям микротвердости из-за больших возникающих градиентов свойств между упрочненными слоями и матрицей. Следствием является возникновение высоких внутренних напряжений в приповерхностных слоях, приводящее к разрушению материала даже при слабых нагрузках. Известен способ ионно-лучевой обработки изделий и материалов (Sharkeev Yu. P. , Gritsenko В.Р., Perry A.J., Fortuna S.V., Modification of mettallic materials and hard coatings using vacuum arc metal ion implantation. Vacuum, 1999, 1, v. 52, p. 247-254), по которому можно с помощью ионных пучков повышать износостойкость изделий. Одним из основных недостатков данного способа является ограничение по достигаемой микротвердости в приповерхностных слоях. Начиная с некоторых значений микротвердости, которые для каждого материала свои, напряжения, возникающие в приповерхностных слоях, столь велики, что прочности материала не хватает, и он разрушается либо самопроизвольно, либо при нагружении. Самопроизвольное разрушение (блистеринг) описано в работе "Ионная имплантация" /Под ред. Дж. К. Хирвонена. М.: Металлургия, 1985, 391с. Разрушение под нагрузкой нами наблюдалось при работе упрочненных сверл. В этом случае происходили отколы в виде мелких частичек от режущей кромки сверл. Наиболее близким к заявляемому способу ионно-лучевой обработки является способ по патенту РФ 2152455, заключающийся в том, что сначала имплантируют ионы, выбранные из группы элементов, образующих твердые соединения с высокой энергией (80-200 кэВ), а затем ионы с низкой энергией (20-80 кэВ). Недостатком данного способа является то, что обработка изделия по данному способу приводит при повышенных ударных нагрузках, таких, как черновая обработка режущим инструментом, холодная штамповка твердых материалов и др., к возникновению микросколов на острых режущих кромках. Чтобы избежать этого, приходится понижать микротвердость приповерхностных слоев, что снижает эффект повышения износостойкости изделий от ионно-лучевой обработки. Создание двухслойной структуры позволяет повысить износостойкость многих материалов и изделий, однако, проблемы ограничения повышения микротвердости приповерхностных слоев с помощью ионных пучков не снимает. Задачей данного изобретения является разработка ионно-лучевого способа повышения износостойкости материала изделия с тем, чтобы существенно увеличить его срок службы. Этот технический результат достигается тем, что ионно-лучевая обработка материала изделия включает в себя имплантацию ионов металла и (или) неметалла, выбираемых из группы элементов, образующих твердые соединения путем создания в приповерхностной области материала изделия двухслойной структуры, первый слой которой формируют при повышенной энергии (80-200 кэВ), а второй слой при пониженной энергии (20-80 кэВ) имплантируемых ионов, при этом второй слой формируют в виде прерывистых высокотвердых участков с помощью расположенной на обрабатываемом материале изделия сетки. Кроме того, высокотвердые участки формируют в виде периодически расположенных полосок шириной 100-1000 мкм. Кроме того, высокотвердые участки формируют в виде периодически расположенных прямоугольников 100-1000 мкм. Кроме того, формирование второго слоя осуществляют через сетку, материал которой состоит из элементов, образующих с имплантируемыми элементами твердые соединения. Кроме того, расстояние между высокопрочными участками составляет от 50 до 500 мкм. При осуществлении предлагаемого способа в приповерхностной зоне материала создают периодическую структуру, представляющую собой последовательность твердых и еще более твердых участков в приповерхностных областях обработанного материала. Из-за малых размеров участков с очень высокой твердостью возникающие напряжения при образовании упрочненного слоя частично релаксируют и не приводят к блистерингу или сколам в процессе работы. Необходимо учесть, что имплантируемые ионы, попадая на края затеняющей сетки, распыляют ее материал, который, попадая на обрабатываемую поверхность, перемешивается с материалом матрицы. В связи с этим элементный состав материала сетки может быть таким, что образует твердые соединения с имплантируемыми ионами. Важным является то, что размеры ячеек сетки должны быть вполне определенными, так как от этого будет зависеть размер участка с повышенной твердостью. При размерах участков менее 100 мкм их роль в повышении износостойкости будет незначительна, практически они просто перемешаются с матрицей. При размерах более 1000 мкм возникающие напряжения от внедренных ионов не будут в достаточной мере релаксированы и периодическая структура не сыграет своей роли, а разрушение будет происходить так же, как будто это монослой. Созданные при ионной имплантации высокотвердые соединения могут очень сильно отличаться по своим свойствам от матрицы. Поэтому даже в узких полосках могут возникать напряжения, приводящие к образованию сколов при приложении нагрузки в процессе эксплуатации. В этом случае целесообразно формировать участки высокотвердых соединений не в виде полос, а в виде прямоугольников. Расстояние менее 50 мкм между высокопрочными участками может быть недостаточным для релаксации возникающих напряжений, а при расстоянии более 500 мкм износ и деформация в процессе работы упрочненного материала будет происходить исключительно в менее прочных слоях, что может приводить к преждевременному выходу изделия из строя. Для еще большего уменьшения возникающих напряжений при ионно-лучевой обработке второй, прерывистый, слой целесообразно осуществлять с более низкой энергией 20-80 кэВ. В этом случае распределение ионов по глубине будет более равномерное и максимальная твердость будет непосредственно на поверхности. Предлагаемый способ осуществляют следующим образом. Вакуумную камеру, в которой расположен источник ионов, откачивают до давления 10-3 Па. Производят ионную очистку изделия с помощью ионного источника. При этом энергия ионов не превышает 10-20 кэВ. Затем повышают энергию ионов до 80-200 кэВ, имплантируют ионы металла и (или) неметалла флюенсом 5



Формула изобретения
1. Ионно-лучевой способ повышения износостойкости материала изделия, включающий имплантацию ионов металла и/или неметалла, выбранных из группы элементов, образующих твердые соединения, путем создания в приповерхностной области материала изделия двухслойной структуры, первый слой которой образован при повышенной энергии (80-200 кэВ), а второй слой при пониженной энергии (20-80 кэВ) имплантируемых ионов, отличающийся тем, что второй слой формируют в виде прерывистых высокотвердых участков с помощью сетки, расположенной на обрабатываемом материале изделия. 2. Способ по п. 1, отличающийся тем, что высокотвердые участки формируют в виде периодически расположенных полосок шириной 100-1000 мкм. 3. Способ по п. 1 отличающийся тем, что высокотвердые участки формируют в виде периодически расположенных прямоугольников с линейными размерами 100-1000 мкм. 4. Способ по любому из пп. 1-3 отличающийся тем, что формирование второго слоя осуществляют через сетку, материал которой состоит из элементов, образующих с имплантируемыми элементами твердые соединения. 5. Способ по пп. 1-4, отличающийся тем, что расстояние между высокопрочными участками составляет 50-500 мкм.РИСУНКИ
Рисунок 1