Способ очистки гидроударом аксиально-смещенной режущей поверхности абразивного инструмента
Изобретение относится к машиностроению, а именно к обработке металлов резанием на шлифовальных станках, использующих вращающийся абразивный инструмент. Способ заключается в том, что смазочно-охлаждающую технологическую смесь (СОТС) подают вне зоны обработки в кожух и воздействуют гидроударником с концентратором в виде поршня с цилиндром. Последний соединен с подвижным кожухом металлорезиновым рукавом, имеющим патрубки для подачи СОТС. Подвижному кожуху сообщают осцилляцию синхронно колебаниям аксиально-смещенной режущей поверхности абразивного инструмента. Такие действия обеспечивают условия эрозионной кавитации, улучшающие очистку абразивного инструмента и усиленную его пропитку СОТС. 2 з.п. ф-лы, 2 ил.
Изобретение относится к машиностроению, а именно к обработке металлов резанием на шлифовальных станках, использующих вращающий абразивный инструмент.
Известен способ и устройство для очистки режущей поверхности абразивных инструментов, содержащее ультразвуковой вибратор с концентратором, эквидистантный ему кожух и связанную с его полостью систему подачи смазочно-охлаждающей жидкости, при этом в стенке кожуха по всему периметру выполнена торцовая полость, связанная с системой подачи смазочно-охлаждающей жидкости [1]. Недостатком известного способа и устройства является то, что данный способ не обеспечивает качественную очистку абразивного инструмента с аксиально-смещенным режущим слоем, последний получают путем установки кругов под острым углом к плоскости, перпендикулярной оси вращения. Задачей изобретения является обеспечение качественной очистки кругов с аксиально-смещенным режущим слоем и неравномерным распределением загрязненной поверхности вдоль синусоидальной образующей инструмента. Поставленная задача решается с помощью предлагаемого способа очистки режущей поверхности абразивных инструментов, включающего подачу смазочно-охлаждающей технологической смеси (СОТС) вне зоны обработки в кожух с воздействием на нее вибратора с концентратором, при этом осуществляют очистку гидроударом аксиально-смещенной режущей поверхности абразивного инструмента, а в качестве вибратора и концентратора используют соответственно гидроударник и поршень с цилиндром, который соединяют с выполненным подвижным кожухом металлорезиновым рукавом, имеющим патрубки для подачи СОТС. Кроме того, для получения аксиально-смещенной режущей поверхности абразивный инструмент устанавливают между двумя подшипниковыми опорами под острым углом к плоскости, перпендикулярной его продольной оси вращения, с помощью втулки с буртиком, имеющей внутренний косой торец и коническое посадочное отверстие, втулки с косым торцом и гайки. При этом подвижному кожуху с кавитируемой в нем СОТС сообщают осцилляцию синхронно колебаниям аксиально-смещенной режущей поверхности абразивного инструмента путем закрепления кожуха с помощью боковин на подшипниковых опорах, установленных под острым углом к плоскости, перпендикулярной продольной оси вращения абразивного инструмента. Предлагаемый способ для очистки гидроударом аксиально-смещенной режущей поверхности абразивных инструментов поясняется чертежами. На фиг. 1 изображено устройство, реализующее предлагаемый способ, общий вид; на фиг.2 - сечение А-А на фиг.1. Способ очистки аксиально-смещенной режущей поверхности абразивных инструментов от металлической стружки и отработанных частиц шлама основан на гидроударе, который позволяет вызывать кавитационный эффект и пропитывать поровое пространство рабочей жидкостью, активно воздействуя на процесс шлифования. Устройство, реализующее предлагаемый способ, состоит из импульсного гидравлического привода (гидроударника) 1 с концентратором 2. Гидроударник [2] со штоком 3 образуют камеру А1 обратного хода, которая соединена с напорной магистралью, а также тормозную камеру G. Поршень 4 отделяет камеру В, заполненную газом, от гидравлической камеры, сообщающейся с напорной магистралью. Плунжер 8, имеющий проточку F, образует с корпусом камеру С рабочего хода, сообщающуюся последовательно с напорной и сливной магистралями посредством золотника 6, перемещаемого плунжерами 5 и 7, образующими с корпусом камеры управления D и возврата Е. В исходном положении рабочая жидкость поступает из напорной магистрали через проточку F на плунжере 8 в камеру управления D, золотник 6 переключается, так как площадь плунжера управления 5 больше площади плунжера возврата 7, и камера С рабочего хода сообщается со сливной магистралью. Камера А1 соединена с напорной магистралью, но обратный ход штока не происходит, так как кольцевой выступ на штоке остается в тормозной камере G. Пружины 9 перемещают концентратор 2 со штоком 3 вверх (согласно фиг.1), который выходит из тормозной камеры G. Дальнейший обратный ход штока будет осуществляться под действием жидкости, поступающей в камеру A1. В период переключения золотника и обратного хода штока происходит накопление жидкости в гидропневмоаккумуляторе напорной магистрали. При завершении обратного хода штока проточка F на плунжере 8 соединит камеру управления D со сливной магистралью и золотник 6 переключится под действием плунжера возврата 7 и сообщит камеру рабочего хода с напорной магистралью. Плунжер 8 и шток 3 под действием жидкости, поступающей в камеру С рабочего хода, ускоренно перемещается в сторону концентратора 2. В начальной стадии движения, при низкой скорости штока, часть жидкости продолжает поступать от насоса в гидропневмоаккумулятор, сжимая в нем газ. С увеличением скорости штока растет потребление рабочей жидкости и при некоторой скорости штока станет равной расходу жидкости, поступающей из напорной магистрали, в этот момент давление жидкости достигает максимального значения за рабочий цикл. При дальнейшем увеличении скорости штока величина потребления превосходит подачу жидкости в камеру из напорной магистрали. Вследствие этого давление жидкости в камере и напорной магистрали падает. При понижении давления жидкости в напорной магистрали начинает работать гидропневмоаккумулятор - под действием газа жидкость из его камеры вытесняется в напорную магистраль. Дополнительная подача жидкости из гидропневмоаккумулятора частично покрывает потребление жидкости на больших скоростях штока и предотвращает резкое падение давления жидкости в напорной магистрали и камере рабочего хода. Рабочий ход штока 3 завершается ударом концентратора 2 по СОТС, находящейся под ним. При соударении концентратора с СОТС проточка сообщает камеру управления D с напорной магистралью, золотник 6 перемещается и соединяет камеру С рабочего хода со сливной магистралью. Одновременно с переключением золотника шток 3 завершает по инерции ход совместно с концентратором 2. В период совместного движения штока и концентратора кинетическая энергия, накопленная штоком, передается через концентратор рабочей жидкости, находящейся в зоне очистки, в виде импульса силы, вызывая кавитацию и воздействуя на режущую поверхность абразивного инструмента. Концентратор со штоком перемещается с большой скоростью, и шток входит в тормозную камеру G, дросселирует через кольцевой зазор между штоком и корпусом жидкость, отсеченную в полости, обеспечивая плавное торможение штока. Гашение скорости исключает удары по корпусу, а следовательно, его деформацию и повреждения. Концентратор 2, находясь в цилиндре 10, постоянно стремится занять верхнее положение (согласно фиг.1) под действием пружин 9, которые закреплены на осях 11. Цилиндр 10 через резиновые прокладки 12 жестко соединен с корпусом 1 гидроударника. Подвижный кожух 13 соединен с цилиндром 10 концентратора 2 посредством металлорезинового рукава 14 с помощью кольца 15 и хомута (не показан). Для подвода рабочей жидкости под концентратор в зону очистки в рукаве размещены штуцера 16 и 17, связанные с системой подачи СОТС (не показана) гофрированными патрубками. Так как зона контакта абразивного инструмента 18 с заготовкой осциллирует благодаря аксиально-смещенному режущему слою, необходимо в такт осцилляции круга перемещать и кожух 13. Крепление и привод подвижного кожуха 13 осуществляются с помощью боковин 19, которые закреплены на подшипниковых опорах 20. Последние установлены под острым углом



Формула изобретения
1. Способ очистки режущей поверхности абразивных инструментов, включающий подачу смазочно-охлаждающей технологической смеси (СОТС) вне зоны обработки в кожух с воздействием на нее вибратора с концентратором, отличающийся тем, что осуществляют очистку гидроударом аксиально-смещенной режущей поверхности абразивного инструмента, а в качестве вибратора и концентратора используют соответственно гидроударник и поршень с цилиндром, который соединяют с выполненным подвижным кожухом металлорезиновым рукавом, имеющим патрубки для подачи СОТС. 2. Способ по п.1, отличающийся тем, что для получения аксиально-смещенной режущей поверхности абразивный инструмент устанавливают между двумя подшипниковыми опорами под острым углом к плоскости, перпендикулярной его продольной оси вращения, с помощью втулки с буртиком, имеющей внутренний косой торец и коническое посадочное отверстие, втулки с косым торцом и гайки. 3. Способ по п.2, отличающийся тем, что подвижному кожуху с кавитируемой в нем СОТС сообщают осцилляцию синхронно колебаниям аксиально-смещенной режущей поверхности абразивного инструмента путем закрепления кожуха с помощью боковин на подшипниковых опорах, установленных под острым углом к плоскости, перпендикулярной продольной оси вращения абразивного инструмента.РИСУНКИ
Рисунок 1, Рисунок 2