Способ получения политетрафторэтилена методом фотохимической полимеризации
Изобретение относится к получению политетрафторэтилена, который может быть использован в качестве компонента для получения резин и консистентных пластичных смазок. Политетрафторэтилен получают фотохимической полимеризацией тетрафторэтилена в газовой фазе с использованием инициатора. В качестве инициатора используют смесь тетрафтордихлорацетона и трифтортрихлорацетона с температурой кипения 40-90oС в количестве 5-15 мас.% от загруженного тетрафторэтилена. Изобретение позволяет получить высокодисперсный термостабильный политетрафторэтилен, применение которого в качестве компонента резин и консистентных пластичных смазок увеличивает их износостойкость, стойкость к растворителям, маслам и агрессивным средам. 1 табл.
Изобретение относится к органической химии, а именно к получению тетрафторэтилена, который может быть использован в качестве компонента для получения резин и консистентных пластичных смазок.
Тетрафторэтилен сравнительно легко полимеризуется в присутствии перекисных инициаторов. Существует способ полимеризации в массе, а также суспензионный и эмульсионный. Наиболее распространен способ водоэмульсионной полимеризации при умеренных температуре и давлении в зависимости от активности переписного инициатора. В качестве инициаторов используют персульфаты щелочных металлов, в качестве эмульгаторов - органические и фторорганические поверхностно-активные вещества. Этот процесс хорошо изучен. /Bolstad A.N. пат. США 3163628, 1964/. Политетрафторэтилен, полученный эмульсионной полимеризацией, в зависимости от области применения требует дополнительной обработки: удаления воды, стабилизатора, а также и других операций. /Соединения фтора. Синтез и применение под ред. Н.Исикава, Москва, "Мир", 1990 г. стр. 63-64/. Известен также способ фотохимической полимеризации тетрафторэтилена с использованием ультрафиолетового излучения в присутствии источника радикалов - трифториодметана (R.N. Haszeldine J. Chem. Soc. 2860, 1949 г.). Этот способ наиболее близок по технической сущности к предлагаемому изобретению. Недостатками этого способа являются: - маленький выход политетрафторэтилена (25-30%); - значительное время протекания реакции (12 и более часов); - наличие большого количества низкомолекулярных жидких продуктов реакции, что требует дополнительных операций по выделению целевого полимера; - получаемый полимер CF3(CF3-CF2)nJ содержит легко отщепляющийся атом иода, что значительно ухудшает стабильность полимера. При создании изобретения ставилась задача найти способ получения высокодисперсного термостабильного политетрафторэтилена, применение которого в качестве компонента резин и консистентных пластичных смазок увеличивает их износостойкость, стойкость к растворителям, маслам и агрессивным средам. Это достигается тем, что фотохимическую полимеризацию тетрафторэтилена проводят в газовой фазе в присутствии в качестве источника радикалов смеси тетрафтордихлорацетона и трифтортрихлорацетона (формулы





Реакционная смесь содержала фторхлорацетоны со следующими температурами кипения:




Из реакционной массы выделяли путем разгонки фракцию с температурой кипения в интервале 40-90oС (58-90% от исходной смеси), которая содержала только тетрафтордихлорацетон и трифтортрихлорацетон. Другие фторхлорацетоны кипят при значительно более высоких температурах. Различное соотношение тетрафтордихлорацетона и трифтортрихлорацетона в их смеси не влияет на процесс полимеризации. Выделение индивидуальных компонентов из смеси экономически нецелесообразно, так как применение любого из этих двух фторхлорацетонов в отдельности оказывает идентичное влияние на скорость реакции, выход и качество получаемого полимера, как и в случае их смеси. Политетрафторэтилен, полученный этим способом, должен представлять собой белый порошок с насыпной массой в пределах 350-550 г/дм3, иметь температуру плавления 310-320oС, размер частиц не более 60 мкм, гранулометрический состав (массовое количество частиц с размером до 50 мкм) не менее 80 мас.%. Фотохимическую реакцию полимеризации проводят в реакторе из нержавеющей стали вместимостью 23,5 л. Реактор снабжен манометром, термопарой, кварцевым фонарем, в который помещают ртутно-кварцевую лампу ДРЛ-250. Пример 1. Реактор вакуумируют до остаточного давления 133,3-399,9 Па (1-3 мм рт. ст.), включают ртутно-кварцевую лампу, в результате чего температура в реакторе достигает 100oС. Далее при выключенной лампе загружают смесь фторхлорацетонов в количестве 11 г (5 мас.% от загруженного тетрафторэтилена), по показанию манометра загружают тетрафторэтилен в количестве 220 г. Включают вновь ртутно-кварцевую лампу. В процессе протекания реакции давление в реакторе понижается в течение 1 часа с 1,1 ати до 0,06 ати (с 1,08


- температура плавления, oС 318
- насыпная плотность, г/дм3 370
- гранулометрический состав, мас.% 89. Указанная цель достигается. Остальные примеры представлены в таблице.
Формула изобретения
РИСУНКИ
Рисунок 1