Оптический доплеровский гидрофон
Изобретение относится к области гидроакустики и может быть использовано в качестве бесконтактного средства обнаружения источника гидроакустических сигналов. Оптический доплеровский гидрофон содержит лазер и оптически согласованные с ним первый светоделитель, первый передающий объектив, первый приемный объектив, второй светоделитель, приемную диафрагму и фотоприемник, блок обработки доплеровской частоты и программный блок, при этом приемная диафрагма установлена перед фотоприемником, подключенным выходом к блоку обработки доплеровской частоты, управляемый вход которого соединен с одним из выходов программного блока, а также третий светоделитель, установленный параллельно первому светоделителю, и оптически связанные с ним второй передающий и второй приемный объективы, четвертый светоделитель, установленный параллельно второму светоделителю, и пять управляемых оптических затвора, установленных соответственно между первым светоделителем и первым передающим объективом, между третьим светоделителем и вторым передающим объективом, между третьим и четвертым светоделителями, между первым приемным объективом и вторым светоделителем и между вторым приемным объективом и четвертым светоделителем, при этом управляемые входы пяти оптических затворов подключены к соответствующим пяти выходам программного блока. Также дополнительно содержит генератор светорассеивающих частиц, устройство впрыскивания их в исследуемую среду, оптическое устройство сдвига частоты световой волны, установленное между первым светоделителем и первым передающим объективом или между третьим светоделителем и вторым передающим объективом. Первый светоделитель выполнен с возможностью взаимного смещения относительно третьего светоделителя. Технический результат заключается в расширении числа измеряемых параметров звуковой волны, а именно получение дополнительной возможности измерения биградиентов скорости и градиентов более высоких порядков звуковой волны, а также оценка пространственных разностных характеристик гидроакустического поля. 3 з.п.ф-лы, 2 ил.
Изобретение относится к области гидроакустики и может быть использовано в качестве бесконтактного средства обнаружения источника гидроакустических сигналов.
Известно устройство аналогичного назначения [1], реализованное в способе измерения уровней звукового давления источников шумоизлучения подводного объекта. Известное устройство под названием оптический гидрофон денситометрическим корреляционным способом позволяет обнаружить источники гидроакустических сигналов и оценить уровень их звукового давления. Недостатком известного оптического гидрофона [1] является сложность его практической реализации, а также сложность выделения последнего сигнала на фоне гидрофизических помех. Известно лазерное доплеровское устройство для обнаружения акустических сигналов, которое можно использовать в качестве гидрофона [2], принятое за прототип. В прототипе используется хорошо разработанный анемометрический способ измерения колебательной скорости звуковой волны, в связи с чем, он свободен от недостатков аналога [1]. В известном оптическом доплеровском гидрофоне используется схема с опорным пучком, содержащая лазер и оптически согласованные с ним в лазерный доплеровский измеритель скорости (ЛДИС) первый светоделитель, передающий объектив, приемный объектив, второй светоделитель, приемную диафрагму и фотоприемник, а также блок обработки доплеровской частоты и программный блок, при этом приемная диафрагма установлена перед фотоприемником, подключенным выходом к блоку обработки доплеровской частоты, управляемый вход которого соединен с одним из выходов программного блока. Недостатком известного гидрофона является ограниченность его применения случаями измерения амплитуды колебательной скорости и связанного с ней градиента давления в звуковой волне. Техническим результатом, получаемым от внедрения изобретения, является расширение числа измеряемых параметров звуковой волны, а именно получение дополнительной возможности измерения биградиентов скорости и градиентов более высоких порядков звуковой волны, а также оценка пространственных разностных характеристик гидроакустического поля. Данный технический результат достигается за счет того, что в известный оптический доплеровский гидрофон, выполненный по схеме ЛДИС с опорным пучком, содержащей лазер и оптически согласованные с ним в схему ЛДИС первый светоделитель, передающий объектив, приемный объектив, второй светоделитель, приемную диафрагму и фотоприемник, а также блок обработки доплеровской частоты и программный блок, при этом приемная диафрагма установлена перед фотоприемником, подключенным выходом к блоку обработки доплеровской частоты, управляемый вход которого соединен с одним из выходов программного блока, дополнительно введены третий светоделитель, установленный параллельно первому светоделителю и оптически связанные с ним во второй ЛДИС, аналогичный первому, второй передающий и второй приемный объективы, а также четвертый светоделитель, установленный параллельно второму светоделителю, и пять управляемых оптических затворов, установленных соответственно между первым светоделителем и первым передающим объективом, между третьим светоделителем и вторым передающим объективом, между третьим и четвертым светоделителями, между приемным объективом и вторым светоделителем и между вторым приемным объективом и четвертым светоделителем, при этом управляемые входы пяти оптических затворов подключены к соответствующим пяти выходам программного блока. Оптический доплеровский гидрофон может дополнительно содержать генератор светорассеивающих частиц и устройство их впрыскивания в исследуемую среду. Оптический доплеровский гидрофон может также содержать оптическое устройство сдвига частоты световой волны, установленное между третьим светоделителем и вторым передающим объективом или между первым светоделителем и первым передающим объективом. При этом первый светоделитель может быть выполнен с возможностью взаимного смещения относительно третьего светоделителя. Изобретение поясняется чертежами: на фиг.1 представлена оптико-электронная схема гидрофона, на фиг.2 - временные диаграммы для пояснения принципа его работы. Оптический гидрофон, содержащий (фиг. 1) лазер 1 и оптически согласованные с ним в схему лазерного доплеровского измерителя скорости с опорным пучком светоделители 2, 3, 4, 5, приемная диафрагма 6 и фотоприемник 7. Оптические элементы 2, 3, 4, 5 формируют опорный пучок 8 ЛДИС. Имеются также формирователи зондирующих лазерных пучков 9, 10, выполненные в виде передающих длиннофокусных объективов 11, 12, и формирователи светорассеянных лазерных пучков 13, 14, выполненные в виде аналогичных длиннофокусных приемных объективов 15, 16. Передающие и приемные объективы формируют в исследуемой жидкой среде с распространяющейся в ней акустической волной 17 четыре измерительных объема 18, 19, 20 и 21, расположенные в вершинах ромба на известном расстоянии вдоль распространения акустической волны, как показано на фиг.1. С помощью светоделителя 4, 5 рассеянные на частицах световые пучки 13, 14 смешиваются с опорным пучком 8 на приемной диафрагме 6. На пути одного из зондирующих 9 или 10 и опорного 8 пучков могут быть установлены устройства сдвига частоты (на чертеже на показаны) для определения знака колебательной скорости. Электронная схема ЛДИС включает в себя традиционные для него блоки программного управления (программный блок 29) и блок 23 обработки доплеровского сигнала, в который как обычно входит процессор и регистратор [3]. Шесть выходов программного блока 22 подключены к пяти электрооптическим затворам 24, 25, 26, 27, 28, установленных соответственно на путях опорного пучка 8, зондирующих (или передающих) пучков 9, 10 и рассеянных пучков 13, 14. Шестой выход программного блока 22 подключен к управляющему входу блока 23 обработки доплеровского сигнала. Все оптические и электронные блоки ЛДИС хорошо известны из специальной литературы [3] и не нуждаются в пояснениях. Программный блок 23 может быть выполнен в виде генератора импульсов, управляемой длительности










Формула изобретения
1. Оптический доплеровский гидрофон, содержащий лазер и оптически согласованные с ним первый светоделитель, первый передающий объектив, первый приемный объектив, второй светоделитель, приемную диафрагму и фотоприемник, а также блок обработки доплеровской частоты и программный блок, при этом приемная диафрагма установлена перед фотоприемником, подключенным выходом к блоку обработки доплеровской частоты, управляемый вход которого соединен с одним из выходов программного блока, отличающийся тем, что дополнительно содержит третий светоделитель, установленный параллельно первому светоделителю, и оптически связанные с ним второй передающий и второй приемный объективы, а также четвертый светоделитель, установленный параллельно второму светоделителю, и пять управляемых оптических затвора, установленных соответственно между первым светоделителем и первым передающим объективом, между третьим светоделителем и вторым передающим объективом, между третьим и четвертым светоделителями, между первым приемным объективом и вторым светоделителем и между вторым приемным объективом и четвертым светоделителем, при этом управляемые входы пяти оптических затворов подключены к соответствующим пяти выходам программного блока. 2. Оптический доплеровский гидрофон по п. 1, отличающийся тем, что дополнительно содержит генератор светорассеивающих частиц и устройство впрыскивания их в исследуемую среду. 3. Оптический доплеровский гидрофон по п. 1, отличающийся тем, что между первым светоделителем и первым передающим объективом или между третьим светоделителем и вторым передающим объективом установлено оптическое устройство сдвига частоты световой волны. 4. Оптический доплеровский гидрофон по п. 1, отличающийся тем, что первый светоделитель выполнен с возможностью взаимного смещения относительно третьего светоделителя.РИСУНКИ
Рисунок 1, Рисунок 2