Устройство, реагирующее на уровень поверхности раздела материала
Устройство для определения уровней несмешивающихся текучих сред в резервуаре содержит датчик линии передачи, проходящий вертикально внутри резервуара для контактирования с жидкостями внутри резервуара. К датчику подключен генератор для передачи вдоль датчика первого электрического сигнала, который непрерывно качает частоту в заданном диапазоне частот. К датчику подключен обнаружитель напряжения для создания второго электрического сигнала, который изменяется как функция амплитуды электрической энергии, отраженной в датчике от различных неоднородностей импеданса вдоль датчика, включающих, в частности, поверхности раздела между и внутри несмешивающихся текучих сред, окружающих датчик. Частотно-спектральные характеристики второго электрического сигнала анализируют для определения пространственного распределения импеданса вдоль датчика, из которого определяют уровни несмешивающихся текучих сред внутри резервуара. Технический результат: возможность определения уровня каждой поверхности раздела несмешивающейся текучей среды внутри резервуара-хранилища, упрощение реализации. 2 с. и 5 з.п. ф-лы, 3 ил.
Настоящее изобретение относится к обнаружению уровня материала в резервуаре-хранилище и, в частности, к обнаружению уровня/ей/ поверхности/ей/ раздела между несмешивающимися материалами, такими как сырая нефть и вода.
Предпосылки создания и краткое описание изобретения В патенте США 4807471 раскрыт способ измерения уровня материала в резервуаре-хранилище. Датчик линии передачи подвешивают вертикально внутри резервуара таким образом, что материал внутри резервуара окружает и входит в контакт с датчиком по мере поднятия и опускания уровня материала внутри резервуара. К датчику линии передачи подключен генератор качающейся частоты для передачи вдоль датчика синусоидального сигнала, который автоматически и непрерывно качает частоту в заданном диапазоне рабочих частот. Сигнал, отраженный от верхней поверхности материала в резервуаре, которая представляет импедансную неоднородность вдоль датчика линии передачи, комбинируется с переданным сигналом для формирования структуры стоячей волны вдоль датчика линии передачи выше материала на специфических частотах, связанных со свободной длиной датчика выше материала и, следовательно, уровнем материала. Свободную длину датчика выше материала и, следовательно, уровень материала определяют как функцию разнесения между частотами в пределах диапазона качающейся частоты, в котором имеет место структура стоячей волны. Хотя способ, раскрытый в вышеупомянутом патенте, и решает проблемы, существующие до сих пор, желательными являются дальнейшие усовершенствования. Например, описанное в вышеупомянутом патенте устройство непригодно для обнаружения уровней поверхностей раздела между несмешивающимися жидкостями, которое генерирует множественные отражения от различных уровней поверхностей раздела. Действительно, описанное в вышеупомянутом патенте устройство включает переменный импеданс на нижнем конце датчика для ограничения датчика в своем волновом сопротивлении и поэтому подавления отражений от нижнего конца датчика. При окружении датчика слоями несмешивающихся текучих сред должно быть отражение, связанное с неоднородностью импеданса на каждой поверхности раздела, все из которых должны анализироваться для правильного определения различных уровней текучей среды. Кроме того, скорость распространения сигнала внутри каждой текучей среды изменяется как функция диэлектрической проницаемости жидкости, что еще более осложняет процесс анализа. Поэтому основной целью настоящего изобретения является разработка устройства и способа не только для обнаружения поверхностей раздела между несмешивающимися текучими средами в резервуаре, но также анализ свойств жидкости, так что может определяться уровень каждой поверхности раздела несмешивающейся текучей среды внутри резервуара-хранилища. Другой более частной целью настоящего изобретения является разработка устройства и способа вышеописанного типа, которые могут быть легко реализованы c использованием в остальном обычной технологии. Устройство для определения уровней несмешивающихся текучих сред согласно настоящему изобретению содержит датчик линии передачи, проходящий вертикально для контактирования с жидкостями, находящимися внутри резервуара. К датчику подключен генератор для передачи вдоль датчика первого электрического сигнала, который непрерывно качает частоту в заданном диапазоне частот. К датчику подключен обнаружитель напряжения для создания второго электрического сигнала, который изменяется как функция амплитуды электрической энергии, отраженной в датчике от различных неоднородностей импеданса вдоль датчика, в частности, включающих поверхности раздела между и внутри несмешивающихся текучих сред, окружающих датчик. Частотно-спектральные характеристики второго электрического сигнала анализируют для определения пространственного распределения импеданса вдоль датчика, из которого определяют уровни несмешивающихся текучих сред внутри резервуара. В предпочтительном варианте воплощения изобретения частотно-спектральные характеристики амплитудной огибающей комбинированных переданных и отраженных сигналов анализируют путем идентификации составляющих изменения частоты, связанных с изменением импеданса вдоль датчика. То есть идентифицируют спектральные линии, связанные с резкими изменениями импеданса на поверхностях раздела между несмешивающимися текучими средами, как распределенные непрерывные спектральные составы, связанные со слоями эмульсии, внутри которых изменяется импеданс. Предпочтительно этот анализ частотного спектра выполняют в процессоре цифрового сигнала, используя обычные способы анализа сигналов, такие как анализ с преобразованием Фурье. Амплитуду отраженного энергетического сигнала также анализируют для определения изменения в диэлектрической проницаемости, связанного с каждым отражением сигнала, и тем самым определения скорости распространения сигнала, связанной с каждым слоем текучей среды. Информацию о частотной составляющей и скоростную информацию комбинируют для определения уровня материала, связанного с каждым отражением сигнала. Краткое описание чертежей Изобретение вместе с дополнительными целями, особенностями и преимуществами будет лучше понято из нижеприведенного описания, прилагаемых формулы изобретения и чертежей, на которых: фиг. 1 изображает функциональную блок-схему устройства для определения уровней несмешивающихся текучих сред в резервуаре согласно предпочтительному варианту воплощения изобретения; фиг. 2А и 2Б изображают графики, иллюстрирующие основные принципы изобретения; и фиг. 3А и 3Б изображают графики, иллюстрирующие работу устройства согласно изобретению. Подробное описание предпочтительных воплощений Раскрытие вышеупомянутого патента США 4807471 дано здесь в качестве ссылки для объяснения предпосылок создания изобретения. На фиг.1 показано устройство 10 согласно предпочтительному варианту воплощения изобретения для измерения уровней несмешивающихся текучих сред 12, 14, 16 внутри резервуара-хранилища 18. Текучая среда 12 может содержать, например, сырую нефть, в то время как текучая среда 16 может содержать воду, удаленную из сырой нефти и собранную на дне резервуара-хранилища. В этом примере промежуточный слой 14 должен был бы содержать нефтеводную эмульсию, внутри которой нефть и вода еще не разделены, но существует непрерывное снижение концентрации нефти сверху вниз слоя. Внутри резервуара 18 подвешен или иначе установлен датчик 20 линии передачи, проходящий вертикально внутри резервуара, предпочтительно сверху вниз. Датчик 20 линии передачи установлен таким образом внутри резервуара, чтобы быть окруженным и входить в контакт с различными жидкостями при повышении или понижении их уровня внутри резервуара. Предпочтительно датчик 20 линии передачи выполнен в виде неэкранированного датчика с параллельными линиями, как описано в вышеупомянутом патенте. Альтернативно, датчик 20 может быть датчиком с коаксиальной линией передачи, способным обеспечивать доступ текучей среды в пространство между коаксиальными элементами датчика, ленточным датчиком, имеющим параллельные проводники, нанесенные на подходящую непроводящую основу, или датчиком с одной линией, окруженным на своем верхнем конце заземленной пусковой пластиной. В любом случае, как хорошо известно в данной области техники, импеданс каждой части датчика изменяется как функция диэлектрических свойств материала, который окружает эту часть датчика. К датчику 20 линии передачи подключен генератор 22 качающейся частоты таким образом, чтобы запускать или распространять вдоль датчика сигнал переменной частоты. Предпочтительно генератор 22 способен запускать на датчик 20 циклический сигнал, который автоматически и непрерывно качает частоту в заданном диапазоне частот между предварительно выбранными частотными пределами. Переданный сигнал и сигналы, отраженные от неоднородностей импеданса, подают в комбинации от датчика 20 к обнаружителю 24 напряжения, который выдает выходной сигнал, поступающий к процессору 26 цифрового сигнала (ПЦС), который непрерывно изменяется как функция амплитуды энергии сигнала в датчике 20. Процессор 26 цифрового сигнала также принимает сигнал от генератора 22, указывающий мгновенную частоту переданного сигнала /или управляет частотой передачи в генераторе 22/ для корреляции амплитуды комбинированного сигнала с частотой передачи, как будет описано ниже. Выходной сигнал от процессора 26 цифрового сигнала поступает к подходящему дисплейному средству 28 для индикации уровней различных текучих сред внутри резервуара 18, а также и других характеристик материала, таких как, например, содержание воды в нефти. Эмульсии несмешивающихся жидкостей при подходящих условиях разделяются на составляющие жидкости, формируя отдельные слои внутри резервуара-хранилища. В процессе деэмульгации разнородные жидкости /например, жидкость 12 и 16 на фиг. 1/ обычно разделяются слоем 14 эмульсии, в котором различная пропорция одной жидкости содержится в другой. Требуется обнаружение и определение местоположения поверхности раздела между различными жидкостями и эмульсиями и анализ содержимого слоев эмульсии для определения количеств составляющих жидкостей и измерения и управления производственными процессами, в которых имеют место эти явления. Предлагаемое устройство обеспечивает автоматическое обнаружение и непрерывную передачу данных о вертикальном положении поверхности жидкости /то есть, поверхности раздела жидкость-газ/ и положении одной или нескольких поверхностей раздела между разнородными жидкостями или жидкими эмульсиями и анализ содержимого любых слоев эмульсии. Обычным применением является обработка сырой нефти для отделения эмульгированной воды. Жидкости могут различаться по диэлектрической проницаемости, например водные жидкости имеют большие величины диэлектрической проницаемости, в то время как масла имеют низкие величины диэлектрической проницаемости. Диэлектрические проницаемости всех жидкостей значительно больше диэлектрической проницаемости свободного пространства. Диэлектрическая проницаемость вакуума равна по определению единице. Для практических целей воздух, газы и пары могут также считаться как имеющие диэлектрическую проницаемость, равную единице. Высокочастотный импеданс неэкранированной электрической линии передачи зависит от диэлектрических свойств окружающей среды. На воздухе диэлектрическая проницаемость равна единице и импеданс линии является известной постоянной величиной, обычно называемый характеристическим импедансом Zо. Величина Zо определяется геометрией поперечного сечения линии передачи. При погружении линии передачи в жидкость с диэлектрической проницаемостью






где L - расстояние от обнаружителя напряжения до поверхности 32 раздела и


где Vо - скорость распространения в воздушном пространстве 30 над жидкостью 12 и является фиксированной известной постоянной. Подставляя уравнение (3) в уравнение (2), получаем:

В измерительном цикле частота f изменяется, вызывая пропорциональное изменение


Так как для данной длины L d



Из уравнения (4) видно, что при непрерывном изменении f в широком диапазоне









Для определения















где




Затем может теперь быть определен коэффициент диапазона, так как скорость распространения V12 в жидкости дается уравнением:

Это обеспечивает автоматическое определение коэффициента диапазона в верхнем сдое жидкости. /Во многих применениях автоматическое определение диапазона не является необходимым, но может использоваться для точной настройки известной скорости, так как диэлектрическая проницаемость является одной и той же для специфического типа жидкости/. Амплитуда сигнала, передаваемого в первый /самый верхний/ слой жидкости 12, равна 1+










где а и b являются соответственно объемными долями жидкостей А и В. Например, для эмульсии сырой нефти /



При снижении содержания воды до 5 об.% кажущаяся диэлектрическая проницаемость становится равной:

Путем определения кажущейся или объемной диэлектрической проницаемости слоя 14 эмульсии объемная доля жидкостей может быть снижена от известной действительной диэлектрической проницаемости каждой составляющей. Для обычной эмульсии нефть-вода большая разница в диэлектрических проницаемостях обеспечивает чувствительный индикатор содержания воды, предоставляя жизненно важное измерение в управлении и оптимизации деэмульгационной обработки. Вкратце, путем передачи сигнала качающейся частоты в неэкранированный датчик линии передачи и частотно-спектрального анализа результирующей огибающей напряжения стоячей волны, обнаруживаемой на входных зажимах датчика, определяют вертикальное распределение диэлектрических свойств в среде, окружающей датчик. Так как разнородные жидкости способны распознаваться по диэлектрическим свойствам, можно определить местоположение и высоту образующихся слоев. Кроме того, может анализироваться структура слоев эмульсии.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3