Способ плазмотермической переработки твердых отходов и устройство для его осуществления
Изобретение может быть использовано при переработке упакованных твердых отходов, содержащих металлические примеси, на предприятиях химической, нефтехимической промышленности, а также в коммунальном хозяйстве. Способ плазмотермической переработки твердых отходов включает непрерывную подачу воздуха, подачу отходов, их газификацию и плавление золы плазменной струей, удаление расплава, дожигание, охлаждение и очистку дымовых газов. Газификацию отходов с образованием коксового остатка и выделением газообразных продуктов разложения, сжигание коксового остатка и плавление золы осуществляют непрерывно и одновременно в разных зонах. Сжигание и плавление проводят при избытке кислорода, а выделяющиеся при этом газообразные продукты смешивают при недостатке кислорода с газообразными продуктами разложения и направляют на дожигание. Подачу отходов осуществляют периодически в виде упаковок, причем период времени между загрузками упаковок меньше времени газификации одной загрузки. Период загрузки отходов составляет 2-5 мин. Устройство для плазмотермической переработки твердых отходов содержит узлы подачи воздуха и отходов в упаковках, камеру термообработки с установленным в ней плазмотроном и оснащенную леткой для вывода расплава, газоход, блоки дожигания и газоочистки, камеру газификации отходов с узлом подвода воздуха, расположенную последовательно с камерой термообработки и сообщенную с ней. Под камеры газификации расположен горизонтально выше уровня расплава в камере термообработки, на высоте h не менее чем 0,5 м от уровня расплава в камере термообработки. Расстояние по горизонтали от камеры газификации до точки привязки оси плазмотрона к расплаву больше или равно h. В газоходе, соединяющем камеру газификации и блок дожигания, установлен смеситель отходящих газов камеры газификации и камеры термообработки. Длина камеры газификации превышает размер упаковки отходов более чем в 2 раза. Технический результат - повышение экологической и экономической эффективности процесса переработки. 2 с. и 2 з.п. ф-лы, 4 ил.
Изобретение относится к области переработки твердых отходов и может быть использовано на предприятиях химической, нефтехимической и других отраслях промышленности, а также в коммунальном хозяйстве при переработке твердых отходов, содержащих металлические примеси.
Одним из перспективных направлений в области технологии обезвреживания отходов является применение низкотемпературной плазмы, благодаря чему в зоне деструкции возможно повышение температуры сжигания, а значит, и достижение высокой степени разложения токсичных веществ, что, в свою очередь, может решить проблему экологической чистоты процесса обезвреживания. Известен способ переработки золы сжигаемого городского мусора в плазменной плавильной системе, включающий подачу золы, ее подогрев и плавление с помощью плазмы, удаление расплава, дожигание, охлаждение и очистку дымовых газов /1/. Из-за высокой температуры плазмы азот и кислород реагируют между собой и образуют оксиды азота. Для снижения их выбросов до допускаемого стандартами уровня к вводимой золе добавляют определенное количество кокса, что создает в плавильной камере восстановительную атмосферу, а расплав при этом состоит из шлака, непрерывно выводимого из печи, и металла, выводимого периодически при наклоне печи. Недостатком известного способа является необходимость периодического удаления расплавленного металла, что требует усложнения конструкции печи и останова технологического процесса переработки золы. Известен также плазменно-дуговой процесс переработки смешанных радиоактивных и опасных отходов с применением стационарного пода, включающий периодическую подачу смешанных отходов, газификацию органической части отходов, плавление оставшихся инертных материалов под действием плазмы, разделение образующегося расплава на оксидную стеклофазу (шлак) и фазу восстановленного металла, раздельное их удаление, дожигание, охлаждение и очистку дымовых газов /2/. Недостатком известного способа является нарушение непрерывного технологического процесса переработки отходов из-за необходимости периодического удаления расплавленного металла. Кроме того, чтобы уменьшить содержание оксидов азота в отходящих дымовых газах до приемлемых величин, необходимо или модифицировать процесс (рециркуляция отходящего газа), или предусмотреть дополнительное оборудование для удаления оксидов азота в системе переработки отходящего газа. Известен также плазменный способ уничтожения промышленных отходов фирмы "EDF", включающий периодическую подачу смешанных отходов, пиролиз органической составляющей отходов и сложных неорганических соединений с выделением летучих горючих веществ, сжигание при недостатке воздуха горючих веществ, плавление оставшихся твердых инертных материалов под действием воздушной плазмы, удаление жидкого шлака и расплавленного металла, дожигание, охлаждение и очистку дымовых газов /3/. Устройство для осуществления известного способа содержит узлы подачи отходов и воздуха, камеру термообработки с установленным в ней плазмотроном и оснащенную леткой для вывода расплава, газоход и блоки дожигания и газоочистки /3/. Недостатком известных способа и устройства является периодичность процесса уничтожения промышленных отходов из-за последовательного проведения всех его стадий в едином технологическом пространстве и обусловленные этим выбросы большого количества оксидов азота в период расплавления зольного остатка, что требует установки дорогостоящих устройств по очистке отходящих газов. Кроме того, периодическое удаление по мере накопления жидкого металла и шлака требует останова технологического процесса. Наиболее близким к заявляемому изобретению является способ переработки твердых отходов, включающий непрерывную подачу воздуха и отходов, их газификацию и плавление золы плазменной струей, удаление расплава, дожигание, охлаждение и очистку дымовых газов, причем газификацию отходов с образованием коксового остатка и выделением газообразных продуктов разложения, сжигание коксового остатка и плавление золы осуществляют непрерывно и одновременно в разных зонах, при этом сжигание и плавление проводят при избытке кислорода, а выделяющиеся при этом газообразные продукты смешивают при недостатке кислорода с газообразными продуктами разложения и направляют на дожигание /4/. Устройство для осуществления известного способа содержит узлы подачи отходов и воздуха, камеру термообработки с установленным в ней плазмотроном, оснащенную леткой для вывода расплава, газоход, блоки дожигания и газоочистки, камеру газификации отходов с узлом подвода воздуха, расположенную последовательно с камерой термообработки и сообщенную с ней, причем под камеры газификации расположен выше уровня расплава в камере термообработки, при этом смешение газообразных продуктов газификации отходов и газообразных продуктов сжигания и плавления осуществляют в камере дожигания с циркулирующим кипящим слоем /4/. Недостатком известных способа и устройства является то, что в случае использования установок небольшой мощности для переработки крупногабаритных или упакованных отходов вследствие непрерывной подачи отходов, предусмотренной технологией, усложняется процесс предварительной подготовки отходов к сжиганию (дробление), что ведет к удорожанию всего процесса переработки твердых отходов. Кроме того, дробление отходов, являющихся биологически опасными (в частности, медицинские отходы), приведет к необходимости тщательной дегазации оборудования подготовки отходов, что, в свою очередь, приведет к образованию дополнительных отходов, подлежащих переработке. В основу изобретения положена задача повышения экологической и экономической эффективности процесса плазмотермической переработки упакованных твердых отходов, содержащих металлические примеси. Поставленная задача решается тем, что в способе плазмотермической переработки твердых отходов, включающем непрерывную подачу воздуха, подачу отходов, их газификацию и плавление золы плазменной струей, удаление расплава, дожигание, охлаждение и очистку дымовых газов, причем газификацию отходов с образованием коксового остатка и выделением газообразных продуктов разложения, сжигание коксового остатка и плавление золы осуществляют непрерывно и одновременно в разных зонах, при этом сжигание и плавление проводят при избытке кислорода, а выделяющиеся при этом газообразные продукты смешивают при недостатке кислорода с газообразными продуктами разложения и направляют на дожигание, подачу отходов осуществляют периодически в виде упаковок, причем период времени между загрузками упаковок меньше времени газификации одной загрузки, при периоде загрузки обеспечивающем содержание в продуктах газификации окиси углерода - более 10% и оксидов азота - отвечающее требованиям экологической безопасности. Период времени загрузки отходов составляет 2-5 минут. Устройство для осуществления способа содержит узлы подачи воздуха и отходов в упаковках, камеру термообработки с установленным в ней плазмотроном и оснащенную леткой для вывода расплава, газоход, блоки дожигания и газоочистки, камеру газификации отходов с узлом подвода воздуха, расположенную последовательно с камерой термообработки и сообщенную с ней, причем под камеры газификации расположен выше уровня расплава в камере термообработки, при этом под камеры газификации выполнен горизонтальным и расположен на высоте h не менее чем 0,5 м от уровня расплава в камере термообработки, расстояние по горизонтали от камеры газификации до точки привязки оси плазмотрона к расплаву больше или равно h, а в газоходе, соединяющем камеру газификации и блок дожигания, установлен смеситель отходящих газов. Длина камеры газификации превышает размер упаковки отходов более чем в 2 раза. Организация процесса переработки твердых упакованных отходов, содержащих металлические примеси, согласно предлагаемому способу делает возможным существование двух зон: с восстановительной атмосферой на стадиях газификации отходов и смешения газов, образующихся при газификации и поступающих из камеры термообработки, и окислительной - на стадии сжигания коксового остатка и плавления золы. Именно благодаря наличию окислительной атмосферы на стадии плавления возможно образование однофазного расплава в виде шлака, а разделение рабочего пространства печи на зоны и непрерывное проведение в них газификации, сжигания и плавления позволяет производить шлакоудаление (непрерывное или периодическое) без останова технологического процесса. Кроме того, выделяющиеся газообразные продукты со стадии сжигания и плавления, имеющие в своем составе значительные выбросы оксидов азота из-за высокой температуры воздушной плазмы, смешиваются с газообразными продуктами разложения отходов при недостатке кислорода, т.е. в восстановительной атмосфере, благодаря чему уменьшается содержание оксидов азота в отходящих газах, поступающих на дожигание. На фиг. 1 представлена схема устройства для осуществления способа плазмотермической переработки твердых отходов; на фиг.2 - график изменения концентраций оксидов азота и окиси углерода в отходящих газах, поступающих на дожигание, при единичной загрузке отходов; на фиг.3 - то же для периода загрузки отходов 3 мин; на фиг.4 - то же для периода загрузки отходов 5 мин. Устройство для плазмотермической переработки твердых отходов в виде упаковок 1 включает узлы подачи отходов 2 и воздуха 3, горизонтальную камеру газификации 4, расположенную последовательно с ней камеру термообработки 5 с установленным в ней плазмотроном 6 и оснащенную леткой 7, через которую удаляют непрерывно или периодически расплав 8. В газоходе, соединяющем камеру газификации 4 и блок дожигания 10, установлен смеситель отходящих газов 9. Устройство также включает блок газоочистки 11. Способ плазмотермической переработки твердых отходов осуществляют следующим образом. При помощи плазмотрона 6 производят разогрев футеровки печи и расплавление шлаковой ванны. В этот период для подавления оксидов азота в камеру газификации 4 подают жидкие или газообразные углеводороды. После нагрева печи до 1000-1100oС в камеру газификации 4 при помощи узла подачи отходов 2 периодически подают упаковки с отходами 1, где они под воздействием горячих газов, поступающих из камеры термообработки 5, и при помощи воздуха, подаваемого через узел 3, расположенный в подовой части камеры 4, газифицируются. Подачу воздуха в камеру газификации осуществляют из условия недостатка кислорода, показателем которого является высокое содержание в газообразных продуктах газификации окиси углерода, водорода и метана. Получаемые коксовый и зольный остатки попадают в расположенную ниже камеру термообработки 5 с образованием естественного откоса, на поверхности которого они непрерывно сгорают и плавятся под воздействием воздушной плазмы, генерируемой плазмотроном 6, и ванны расплава 8. Расход плазмообразующего газа - воздуха - подбирают таким образом, чтобы в камере термообработки имелся избыток кислорода (коэффициент избытка кислорода


Формула изобретения
1. Способ плазмотермической переработки твердых отходов, включающий непрерывную подачу воздуха, подачу отходов, их газификацию и плавление золы плазменной струей, удаление расплава, дожигание, охлаждение и очистку дымовых газов, причем газификацию отходов с образованием коксового остатка и выделением газообразных продуктов разложения, сжигание коксового остатка и плавление золы осуществляют непрерывно и одновременно в разных зонах, при этом сжигание и плавление проводят при избытке кислорода, а выделяющиеся при этом газообразные продукты смешивают при недостатке кислорода с газообразными продуктами разложения и направляют на дожигание, отличающийся тем, что подачу отходов осуществляют периодически в виде упаковок, причем период времени между загрузками упаковок меньше времени газификации одной загрузки, при периоде загрузки, обеспечивающем содержание в продуктах газификации окиси углерода более 10% и оксидов азота - отвечающее требованиям экологической безопасности. 2. Способ по п.1, отличающийся тем, что период загрузки отходов составляет 2-5 мин. 3. Устройство для плазмотермической переработки твердых отходов, содержащее узлы подачи воздуха и отходов в упаковках, камеру термообработки с установленным в ней плазмотроном и оснащенную леткой для вывода расплава, газоход, блоки дожигания и газоочистки, камеру газификации отходов с узлом подвода воздуха, расположенную последовательно с камерой термообработки и сообщенную с ней, причем под камеры газификации расположен выше уровня расплава в камере термообработки, отличающееся тем, что под камеры газификации выполнен горизонтальным и расположен на высоте h не менее чем 0,5 м от уровня расплава в камере термообработки, расстояние по горизонтали от камеры газификации до точки привязки оси плазмотрона к расплаву больше или равно h, а в газоходе, соединяющем камеру газификации и блок дожигания, установлен смеситель отходящих газов камеры газификации и камеры термообработки. 4. Устройство по п. 3, отличающееся тем, что длина камеры газификации превышает размер упаковки отходов более чем в 2 раза.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4