Центробежный насос
Изобретение относится к насосостроению и касается центробежного насоса для систем шариковой очистки трубок, например конденсаторов турбин. Насос содержит рабочее колесо и спиральный отвод. Рабочее открытое колесо рассчитано на параметры по коэффициенту быстроходности ns=100-150, выполнено в виде конусного диска с центральным углом 70-120o с 2-4 спиральными лопатками, с нулевым углом атаки на расчетном режиме, углом выхода 12-24o и густотой лопастной системы 1,3-1,7, причем соотношение указанных параметров выполнено из условия обеспечения диффузорности проходного межлопаточного канала, не превышающей 4-10o. Лопатки выполнены с минимальной высотой и расстоянием между передней кромкой лопатки на входе колеса и соседней лопаткой по нормали к ней, превышающими диаметр шариков системы очистки на величину гарантированного зазора. Рабочие поверхности лопаток имеют наклон в сторону вращения рабочего колеса. Использование изобретения позволяет достичь существенного уменьшения износа шариков, происходящего за счет их деформации и трения о стенки рабочих органов насоса, а также кавитационного разрушения в рабочих каналах колеса при одновременном обеспечении проходимости шариков при залповой загрузке системы шариками. 5 з.п. ф-лы, 4 ил.
Предложение относится к центробежным насосам, используемым в системах шариковой очистки трубок, например конденсаторов паровых турбин, которые вместе с водой перекачивают эластичные абразивные шарики заданного диаметра в контуре циркуляции системы шариковой очистки.
Центробежный насос для систем шариковой очистки трубок конденсаторов предназначен для прокачивания горячей воды с введенными в нее эластичными абразивными пористыми шариками с фиксированным диаметральным размером - Д, несколько превышающим, на величину допустимой деформации, проходной диаметр трубок конденсатора паровой турбины. Из-за большого числа трубок шарик подходит к закругленному входу в трубку с небольшой скоростью и за счет напора воды проталкивается как пробка по трубке, счищая с нее накипь и, тем самым, обеспечивая высокую теплопроводность трубок конденсатора. Накипь отфильтровывается. Шарики при их износе отлавливаются специальным фильтром и заменяются на новые посредством загрузочного устройства. При этом имеет место "залповое" прохождение шариков через насос. Наиболее интенсивный износ дорогостоящих шариков происходит в процессе работы системы очистки при их периодическом прохождении через рабочие органы насоса, где имеют место большие скорости и ускорения; существенные изменения скоростей и давлений в пространстве, занимаемом пористым пропитанным водой шариком, а также интенсивное трение шариков о стенки рабочего колеса и спирального отвода. Насосы этого типа выполняются на такие соотношения параметров напор-подача-обороты вала, которые соответствуют коэффициенту быстроходности ns, лежащему в диапазоне 100-150, но с геометрией рабочего колеса, существенно отличающейся от традиционных лопастных колес центробежных насосов. Так, в специализированном для перекачивания воды с шариками насосе фирмы Taprogge (аналог) рабочее колесо содержит два спиральных трубообразных канала, расположенных радиально от входа к выходу колеса, что позволило обеспечить малую диффузорность проходных каналов при их поперечных размерах, превышающих диаметр шариков. Насосы этого типа требуют применения сложной литейной технологии для изготовления рабочего колеса, а при "залповой" загрузке системы очистки шариками возможно закупоривание ими одного или обоих проходных каналов, что вызывает появление значительных радиальных осевых усилий или отказ системы очистки. Кроме того, из-за сложной конфигурации рабочего колеса невозможна даже частичная разгрузка колеса от осевых усилий. Применение же геометрии рабочих лопаточных колес, соответствующих указанному диапазону ns, практически невозможно по следующим причинам. Насосы на ns= 100-150 имеют радиальные колеса с шириной колеса и лопаток, существенно уменьшающейся от входа к выходу из колеса (см. рис.2.2., с.52 книги Аринушкин Л.С. Авиационные центробежные насосные агрегаты. М., 1967 г.). При заданном диаметре шариков, обычно 25-32 мм, и требуемых параметрах насоса по напору и подаче рабочий канал на выходе будет существенно меньшим размера шариков и они либо будут проходить рабочее колесо с большой деформацией и трением (что разрушает шарики), либо произойдет полная закупорка шариками проходных каналов рабочего колеса. В радиальных рабочих колесах существенные деформации и трение шариков о стенки колеса происходят и на его входном участке при повороте потока от оси в радиальном направлении, поскольку здесь в пространстве объема шарика линии тока жидкости имеют различную кривизну и существенно переменные скорости движения жидкости. Проходимость шариками колеса можно обеспечить резко расширив выходное сечение рабочего колеса, т.е. за счет существующего повышения диффузорности проходных каналов, сверх допустимых значений 4-10o. Однако при этом в каналах колеса возрастает турбулентность потока, возникают отрывные течения, развиваются интенсивные кавитационные процессы. Эти факторы приводят к существенному повышению износа шариков и к их разрушению, поскольку кавитация происходит внутри пропитанных водой шариков, что интенсивно разрушает структуру пористого материала шарика. При выполнении центробежного насоса на ns=100-150 с открытым рабочим колесом практически невозможна закупорка рабочего колеса шариками, т.к. за счет трения шариков о стенку корпуса происходит их "растаскивание" и проталкивание в спиральный отвод насоса. Однако насосы такого типа (см. рис. 2.46, с. 96, там же) в их традиционном исполнении также имеют сужающийся к выходу проходной канал и потому не могут быть использованы в системах шариковой очистки. Следует отметить, что "залповая" загрузка шариков производится редко и поэтому в рабочем цикле очистки деформация шариков, имеющая место при этой загрузке, сколь либо существенно не влияет на общий ресурс работоспособности шариков. Решение задачи создания высокоэффективного и технологичного центробежного лопастного насоса для систем шариковой очистки достигается тем, что: - при выполнении насоса для систем шариковой очистки с коэффициентом быстроходности ns=100-150 насос содержит установленное в корпусе с выходным спиральным отводом рабочее колесо, вал которого связан с приводным двигателем, рабочее колесо выполнено в виде конусного диска с центральным углом в диапазоне 70-120o, на внешней поверхности которого выполнены спиральные лопатки с минимальной высотой и расстоянием между передней кромкой лопатки на входе колеса и соседней лопаткой по нормали к ней, превышающими диаметр шариков системы очистки на величину гарантированного зазора, нулевым углом атаки передней кромки для расчетного рабочего режима и углом выхода средней линии рабочего канала в пределах 12-24o при густоте лопастной системы 1,3-1,7, причем соотношение указанных параметров выполнено из условия обеспечения диффузорности проходного межлопаточного канала, не превышающим 4-10o. - Для дополнительного снижения износа шариков за счет их отжима от неподвижной корпусной стенки при движении по рабочему каналу рабочие поверхности лопаток рабочего колеса в сечениях, перпендикулярных оси вала, выполнены наклонными в направлении вращения вала, а для улучшения гидродинамических характеристик такого рабочего колеса этот наклон выполнен уменьшающимся от входной кромки; и/или лопатки дополнительно выполнены с шириной, увеличивающейся от их входной кромки к выходу из рабочего колеса. - Для защиты узла уплотнения от абразивных включений, имеющихся в жидкости при очистке трубок конденсатора, а также для частичной разгрузки колеса от осевых сил, центральная часть корпуса спирального отвода выполнена в виде выступающего в сторону колеса осесимметричного конуса, заглубленного под конусный диск рабочего колеса и расположенного от диска с гарантированным зазором. - Для снижения габаритов насосного агрегата и упрощения его эксплуатации корпус спирального отвода жестко связан промежуточным проставком с фланцем приводного двигателя. Ниже приводится описание данного технического решения специализированного насоса для системы шариковой очистки трубок конденсаторов. На фиг. 1 дан общий вид предложенного насоса с примером его агрегатирования с приводным двигателем. На фиг. 2 - рабочее колесо, вид по оси на лопастную систему со стороны входного патрубка. На фиг. 3 - сечение колеса по фиг. 2, плоскостью, перпендикулярной оси его вала. На фиг. 4 - пример выполнения колеса с лопатками переменной толщины. Центробежный насос шариковой очистки содержит открытое рабочее колесо 1 (см. фиг. 1), вал 2 которого связан с валом приводного двигателя 3. Рабочее колесо расположено в корпусе с выходным спиральным отводом 4. Рабочее колесо 1 выполнено в виде конусного диска 5 с центральным углом











Формула изобретения
1. Центробежный насос для систем шариковой очистки трубок конденсаторов с коэффициентом быстроходности ns= 100-150, содержащий установленное в корпусе с выходным спиральным отводом рабочее колесо, вал которого связан с приводным двигателем, рабочее колесо выполнено в виде конусного диска с центральным углом в диапазоне 70-120oС, на внешней поверхности которого выполнены спиральные лопатки с минимальной высотой и расстоянием между передней кромкой лопатки на входе колеса и соседней лопаткой по нормали к ней, превышающими диаметр шариков системы очистки на величину гарантированного зазора, нулевым углом атаки передней кромки для расчетного рабочего режима и углом выхода средней линии рабочего канала в пределах 12-24o при густоте лопастной системы 1,3-1,7, причем соотношение указанных параметров выполнено из условия обеспечения диффузорности проходного межлопаточного канала, не превышающим 4-10o. 2. Центробежный насос по п. 1, отличающийся тем, что рабочие поверхности лопаток рабочего колеса в сечениях, перпендикулярных оси вала, выполнены наклонными в направлении вращения рабочего колеса. 3. Центробежный насос по п. 2, отличающийся тем, что наклон лопаток в направлении вращения рабочего колеса выполнен уменьшающимся по длине лопатки от ее входной кромки к выходу из колеса. 4. Центробежный насос по любому из пп. 1-3, отличающийся тем, что лопатки выполнены с толщиной, увеличивающейся от их входной кромки к выходу из рабочего колеса. 5. Центробежный насос по любому из пп. 1-4, отличающийся тем, что центральная часть корпуса спирального отвода выполнена в виде выступающего в сторону колеса осесимметричного конуса, заглубленного под конусный диск рабочего колеса и расположенного от диска с гарантированным зазором. 6. Центробежный насос по любому из пп. 1-5, отличающийся тем, что корпус спирального отвода жестко связан промежуточным проставком с фланцем приводного двигателя.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4NF4A Восстановление действия патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 15-2004
Извещение опубликовано: 27.05.2004