Устройство регенерируемое и установка для очистки жидких сред
Изобретение относится к устройствам для очистки жидких сред и может быть использовано преимущественно для очистки питьевой воды и сточных вод от полярных и неполярных органических веществ, ионов тяжелых металлов, активного хлора и их удаления в процессе электрохимической регенерации. Регенерируемое устройство для очистки жидких сред содержит электрохимическую ячейку, состоящую не менее чем из двух элементов, выполненных из смеси углеродных материалов с высокой удельной поверхностью и сорбционной емкостью одного из них. По крайней мере один из элементов выполнен в виде проницаемого сорбционно-активного слоя на подложке, в котором проницаемый сорбционно-активный слой выполнен из смеси углеродных материалов, включающей активированные углеродные материалы, один из которых активированные углеродные волокна. Соотношение объема проницаемого сорбционно-активного слоя к объему подложки составляет не менее 1. Между указанными элементами расположена перегородка. Установка для очистки жидких сред содержит блок фильтрации, включающий регенерируемое устройство, описанное выше, блок питания и блок управления. Технический эффект - создание устройства и установки с возможностью многократной регенерации элементов устройства, не требующих существенного расхода электроэнергии с увеличением их ресурса. 2 с. и 10 з.п.ф-лы, 7 ил.
Заявляемая группа изобретений относится к устройствам для очистки жидких сред и может быть использована преимущественно для очистки питьевой воды и сточных вод от полярных и неполярных органических веществ, ионов тяжелых металлов, активного хлора и их удаления в процессе электрохимической регенерации.
Очистку жидкостей, в том числе питьевой воды и сточных вод осуществляют различными способами. В уровне техники известны фильтрационные устройства для очистки воды, содержащие фильтрационные элементы (модули), выполненные из сорбционных материалов, которые в процессе фильтрации загрязняются. Такие фильтрационные элементы в дальнейшем подвергают очистке различными способами в специальных аппаратах. Одним из известных способов является электрохимический, протекающий в электрохимической ячейке, в которой используют катод в виде, например, полых графитовых цилиндров или в виде волокнистого листа и анод, выполненный чаще всего из металла. Известны также устройства, где очистку жидкостей проводят в электрохимической ячейке с последующей регенерацией электродов в ней. Одним из недостатков таких устройств является использование катодов, обладающих недостаточно высокой сорбционной емкостью. Описанный в патенте США 4806212, опубл. 23.02.1999 г., МКИ C 25 F 5/00 катод для электролитической ячейки, выполненный из активированного углеродного порошка и 80% полимерного связующего, обладает областями высокой удельной поверхности, но из-за высокого содержания связующего компонента не вся поверхность катода активно работает. По патенту США 5976349, опубл. 02.11.1999 г., МКИ С 01 D1/40 очистку растворов с рН>14 от железа и никеля проводят в электрохимической ячейке, состоящей из катода и анода. Катод выполнен в виде волокнистого листа, полученного из смеси электропроводных и неэлектропроводных волокон и связующего компонента фторполимера. Указанный лист закреплен на электропроводной пористой подложке и может быть изготовлен в комбинации с микропористой диафрагмой или мембраной. Анод изготовлен из нержавеющей стали, никеля или окиси никеля. В качестве электропроводных волокон используются углеродные или графитовые волокна диаметром менее 1 мм, преимущественно от 0,1 до 10 мм и длиной более 0,5, преимущественно от 1 до 20 мм, а в качестве неэлектропроводных - органические волокна: полипропилен, полиэтилен, фторполимер или неорганические волокна. Неорганические волокна выбраны из класса керамических волокон, например диоксид циркония, кремниевый карбид или нитрид бора. Согласно указанному изобретению катод, используемый в электрохимической ячейке, имеет большую удельную поверхность (от 20 до 50 м2/м3), необходимую, чтобы получить раствор с содержанием примесей менее 1 мг/кг. Кроме вышеописанного, катод может быть выполнен из смеси углеродных волокон, основанной на волокнах целлюлозы и катионного полимера, в качестве которого применяют катионный крахмал. Цикл очистки длится от 500 до 1000 ч. Поэтому в процессе обработки растворов образуется осадок металлов на катоде, который приводит к снижению показателей по очистке. Катод может быть восстановлен электрохимическим методом, изменяя полярность электродов или понижая напряжение в катоде. При высоких показателях по очистке растворов от тяжелых металлов используемый катод обладает недостаточной сорбционной емкостью, чтобы проводить очистку растворов от органических веществ. В патенте США 5954937, опубл. 21.09.1999 г., МКИ С 02 F 1/461 (прототип) описано устройство для электрохимической очистки жидкостей, в том числе и питьевой воды от различных загрязняющих веществ и регенерации его электродов. Устройство представляет собой электрохимическую ячейку, включающую не менее двух параллельных электродов, расположенных раздельно. Каждый электрод выполнен из углеродного гелиевого материала с твердой матрицей, обладающего областями с высокой удельной поверхностью. Монолитные листы из этого материала могут быть получены пропиткой материала раствором формальдегида с последующей их карбонизацией в инертной среде. Между электродами расположена перегородка в виде пористой диафрагмы или мембраны, причем мембрана может быть выполнена из ионообменного материала (анионо- или катионообменной смолы). Вода проходит между смежными катодом и анодом при небольшом перепаде давления (электролит течет тем же путем). Подаваемый потенциал поддерживается в диапазоне 0,6-1,2 Вт, в котором электросорбция очень эффективна, причем поперек электродов, чтобы избежать газовыделения. Целью описанного прототипа является реализация электрохимического процесса очистки, в силу чего электрод должен иметь развитую поверхность, быть электропроводным и проницаемым для жидкости. Исходя из описанной технологии изготовления электрода он не может быть проницаемым для жидкости, а следовательно, не может обладать высокой суммарной сорбционной емкостью, так как материал, обладающий высокими удельными сорбционными характеристиками, контактирует с жидкостью только поверхностным слоем. Основной задачей заявляемой группы изобретений является создание устройства и установки для очистки жидких сред, в которой элементы выполнены в том числе из активированных углеродных волокон с возможностью многократной регенерации элементов устройства, не требующих существенного расхода электроэнергии, за счет возможности проводить процесс очистки, используя сорбционные процессы без использования электроэнергии на этой стадии в отличие от прототипа и известных в уровне техники регенерируемых конструкций, где процессы и очистки, и регенерации осуществляют электрохимическим путем. Кроме того, фильтрующие элементы должны быть достаточно прочными и устойчивыми ввиду их многократного использования в фильтрационных процессах. В заявляемом устройстве разработаны сорбционные элементы, предназначенные для очистки жидкости, протекающей сквозь сорбционный слой в отличие от прототипа и обладающие низким гидравлическим сопротивлением и по крайней мере один из них большой суммарной сорбционной емкостью. Техническим результатом заявляемой группы изобретений является увеличение ресурса устройства и установки. Поставленная задача и требуемый технический результат при использовании изобретений достигаются тем, что регенерируемое устройство для очистки жидких сред включает электрохимическую ячейку, состоящую не менее чем из двух элементов, выполненных из смеси углеродных материалов с высокой удельной поверхностью и сорбционной емкостью одного из них, по крайней мере один из которых выполнен в виде проницаемого сорбционно-активного слоя на подложке, в котором проницаемый сорбционно-активный слой выполнен из смеси углеродных материалов, включающей активированные углеродные материалы, один из которых активированные углеродные волокна, а соотношение объема проницаемого сорбционно-активного слоя к объему подложки составляет не менее 1. Между указанными элементами расположена перегородка. При этом объем проницаемого сорбционно-активного слоя к объему подложки преимущественно составляет не менее 50. Причем сорбционно-активный слой может быть выполнен в виде композиции из смеси компонентов или в виде тканого и/или нетканого материала, содержать не менее 5 вес.% активированных углеродных волокон длиной не менее 1 мм, диаметром от 1 до 30 мкм. Сорбционно-активный слой может дополнительно содержать полимерный материал. Подложка выполнена из электропроводного углеродного непористого материала, в частности может быть выполнена из графита, а перегородка из полимерного и/или керамического или ионообменного материалов. А установка для очистки жидких сред содержит блок фильтрации, включающий регенерируемое устройство, описанное выше, блок питания и блок управления. Механизм действия устройства включает две стадии: адсорбцию растворенных в воде примесей при фильтрации через сорбционный элемент; регенерацию сорбционно-активного слоя за счет протекания через ячейку электрического тока, причем для обеспечения большей плотности тока ячейка заполняется раствором электролита, а сорбционный элемент используется преимущественно в качестве катода. Для реализации высокой сорбционной емкости устройства и эффективной регенерации необходимым условием протекания обоих процессов является высокая гидравлическая проницаемость сорбционно-активного слоя, достигаемая в процессе его приготовления, которая обеспечивает транспорт веществ в объем сорбционного устройства и эффективное удаление при десорбции под действием электрического тока. Эффективное и равномерное протекание тока через сорбционный элемент, который служит электродом в режиме регенерации, осуществляется за счет высокой электропроводности компонентов сорбционно-активного слоя. За счет сильной гидрофилизации поверхности электрода происходит десорбция всех, в том числе и незаряженных частиц с сорбционной поверхности электрода. Удаление десорбированных примесей осуществляется за счет смены электролита в ячейке. Подложка элемента служит гидравлическим уплотнителем, а при регенерации является еще и промежуточным звеном между металлическими проводниками и материалом элемента, на данной стадии служащего электродом. При соотношении объема сорбционно-активного слоя как для сорбционного, так и для инертного элементов, к объему подложки не менее 1 и выполнении сорбционно-активного слоя из смеси углеродных материалов, включающих активированные углеродные материалы, один из которых активированные углеродные волокна, создается большой полезный объем элемента, т.е. большая часть элемента становится проницаемой для жидкости и газов. В соответствии с этим процесс адсорбции идет активнее. А при регенерации происходят эффективное протекание электролизного процесса для лучшего смыва десорбированных частиц и эффективное удаление их из всего объема элементов. При соотношении объема сорбционно-активного слоя к объему подложки менее 1 снижается ресурс устройства для очистки жидкости. На фиг. 1-3 изображены возможные варианты конструкции устройства: на фиг. 1 изображено устройство, регенерируемое для очистки жидких сред с радиальным протеканием с внешним относительно инертного элемента расположением проницаемого сорбционно-активного слоя; на фиг. 2 изображено устройство, регенерируемое для очистки жидких сред с радиальным протеканием с внутренним относительно инертного элемента расположением проницаемого сорбционно-активного слоя; на фиг. 3 изображено устройство, регенерируемое для очистки жидких сред с продольным протеканием и непроницаемой для жидкости разделительной перегородкой между элементами; на фиг. 4 приведен график зависимости перепада давления от расхода жидкости; на фиг. 5 изображена блок-схема установки, регенерируемой для очистки жидких сред; на фиг. 6 изображена схема блока фильтрования; на фиг. 7 приведены графики зависимости степени очистки от объема пропущенного раствора. Устройство содержит (фиг.1-3) корпус электрохимической ячейки 1, выполненный из стойкого к воздействию кислот и щелочей материала, хорошего электрического изолятора (например, полипропилена, фторопласта). Возможно применение иных не проводящих электрический ток инертных материалов. Стенка корпуса имеет отверстия, предназначенные для протекания жидкости. Корпус устройства имеет по меньшей мере одно присоединительное приспособление с уплотнением для подвода жидкости;сорбционно-активный элемент 2, выполненный в виде проницаемого сорбционно-активного слоя 3 на подложке 4. Сорбционно-активный слой 3 выполнен:
в виде проводящей, сорбционно-активной композиции из смеси компонентов, один из которых активированные углеродные волокна или
в виде слоев тканого и/или нетканого материала или слоев нескольких тканых и/или нетканых сорбционно-активных проводящих материалов. Инертный элемент 5 выполнен в виде проницаемого слоя 6 на подложке 7. Проницаемый слой 6 выполнен
в виде проводящей сорбционно-активной композиции из смеси компонентов или
в виде слоев тканого и/или нетканого материала или слоев нескольких тканых и/или нетканых сорбционно-активных проводящих материалов. Причем инертный элемент может быть также сорбционно-активным. В качестве перегородки может быть использована диафрагма или мембрана. Разделительная диафрагма 8, расположенная между сорбционным и инертным элементами, выполнена из пористого инертного непроводящего материала, например пористого полипропилена. Она герметично прикрепляется к корпусу 1 устройства. К диафрагме 8 плотно прилегают с одной стороны инертный, с другой стороны сорбционный элементы. Диафрагма пропитывается электролитом и проводит ток, но препятствует перемешиванию растворов в катодном и анодном пространстве. Причем чем она тоньше, тем лучше. Для потока жидкости диафрагма проницаема, при этом ее гидравлическое сопротивление невелико. Разделительная мембрана 9, выполненная из ионообменного материала, например анионо- или катионообменной смолы, служит тем же целям, что и диафрагма 8, но препятствует протеканию жидкости в тангенциальном по отношению к ней направлении, чем и отличается от разделительной диафрагмы. Мембрана расположена аналогично диафрагме 8. Подложки 4 и 7, выполненные из инертного проводящего материала (сплошного, тканого или нетканого), служат в качестве гидравлического уплотнителя при фильтрации и для подвода и распределения тока при регенерации. Внутренняя несущая труба 10 с отверстиями (в которую поступает жидкость) прикреплена к верхней части корпуса устройства и снабжена приспособлением для присоединения к корпусу устройства. Служит для равномерного распределения потока по длине устройства при радиальном протекании. Устройства на фиг. 1 и 2 отличаются расположением проницаемого сорбционно-активного слоя 3 относительно инертного элемента. На фиг. 1 изображено устройство, регенерируемое для очистки жидких сред с внешним относительно инертного элемента расположением проницаемого сорбционно-активного слоя. На фиг. 2 изображено устройство, регенерируемое для очистки жидких сред с внутренним относительно инертного элемента расположением проницаемого сорбционно-активного слоя. Конструкция устройства, изображенная на фиг.3, отличается от конструкций, изображенных на фиг. 1 и 2, разделением катодного и анодного пространств непроницаемой для потока мембраной 5, проводящей электрический ток. Она имеет отдельные подводы 11 для жидкости в катодном и анодном пространстве. Элементы в электрохимической ячейке могут быть расположены радиально, по спирали или в плоскостном исполнении. В качестве конструктивных материалов использовали широко известные для очистки от органических веществ и тяжелых металлов нижеследующие материалы. Активированные углеродные волокна, изготовленные OOO "Аквафор", г. Санкт-Петербург, Россия, длиной не менее 1 мм, диаметром от 1 до 30 мкм, адсорбционной емкостью по метиленовому голубому не менее 100 мг/г, с площадью сорбционной поверхности не менее 300 м2/г. Активированные углеродные волокна получают из вискозных волокон по патенту США 5521008. В зависимости от режимов карбонизации и активации могут быть получены активированные углеродные волокна с различной удельной электропроводностью в пределах от 1 до 100 (Ом








Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7