Способ получения композиционных материалов и покрытий из порошков и устройство для его осуществления
Изобретение может быть использовано при получении композиционных материалов и покрытий из них. Изобретение позволяет расширить технологические возможности газодинамического метода за счет получения композиционных материалов из порошковых компонентов, способных вступать в реакцию самораспространяющегося высокотемпературного синтеза. Порошковый компонент подают в индивидуальный поток транспортирующего газа, который поступает из средства подачи транспортирующего газа, связанного с системой запорно-регулирующей аппаратуры управления процессом подачи газопорошковой взвеси. Отрегулированный до необходимых параметров транспортирующий газ подают в систему регулирования концентраций порошковых компонентов в потоке газа, куда порошковые компоненты поступают из узла, выполненного в виде нескольких питателей-дозаторов. Полученная газовзвесь поступает во входной многоканальный штуцер и многоканальный патрубок, из которого по каналам с косым срезом истекает в область удлиненной части критического сечения разгонного сверхзвукового сопла в ядро потока ускоряющего газа-носителя, сформированного посредством средства подачи ускоряющего сжатого газа-носителя. В удлиненной части критического сечения происходит интенсивное перемешивание и ускорение частиц порошковых компонентов до скоростей, близких к околозвуковым. При газодинамическом воздействии ускоренного в сопле газопорошкового потока на подложку осуществляют инициирование химического взаимодействия порошковых компонентов экзотермического состава, в результате которого получают композиционный материал, который может быть отделен от подложки или сохранен в покрытии. 2 с. и 9 з. п. ф-лы, 2 ил.
Изобретение относится к области порошковой металлургии и получению покрытий из порошковых материалов и может быть использовано при получении новых различных композиционных материалов и покрытий из них с уникальными свойствами, а также в различных отраслях промышленности для повышения технологических и физико-химических свойств изделий и придания им специфических свойств.
Известен способ получения тугоплавких твердых сплавов со связкой из группы железа с использованием самораспространяющегося высокотемпературного синтеза (СВС) путем компактирования продуктов СВС динамическим давлением, генерируемым детонацией взрывчатых веществ [1]. Этот способ не требует дорогостоящего оборудования и позволяет получать высокоплотные композиты и интерметаллиды. Недостатком способа являются его ограниченные технологические возможности и достаточно высокие энергозатраты. Кроме этого, способ не обеспечивает высокую чистоту конечного продукта ввиду возможного загрязнения последнего продуктами детонации и не предусматривает возможность формирования композиционного материала в виде покрытия. Известен способ получения керамических покрытий на трубах с помощью термитных реакций, который позволяет формировать материал покрытия без применения сложного дорогостоящего оборудования [2]. Способ позволяет получать покрытия значительной толщины, однако не исключает недостатков предыдущего способа. Направление в технологии самораспространяющегося высокотемпературного синтеза имеет дело с новыми процессами, в которых может быть осуществлено нанесение и формирование покрытий на поверхности материала подложки, сопровождающееся одновременно получением на ней композиционных материалов, интерметаллидов и различного рода соединений. Известен способ получения композиционных материалов из порошковых компонентов, включающий приготовление экзотермического состава из порошковых материалов, введение газотранспортных добавок и покрываемых деталей, инициирование на них химического взаимодействия порошковых компонентов в режиме самораспространяющегося высокотемпературного синтеза. В ходе процесса осуществляется газотранспортный перенос реагентов к поверхности деталей, на которой происходит химическая реакция с образованием СВС продукта в виде покрытия. Совмещая различные носители, регулируя состав, стадийность процесса возможно в одном технологическом процессе получать сложные многокомпонентные материалы и покрытия, в том числе и многослойные из боридов, силицидов, интерметаллидов. Толщина покрытия может изменяться в пределах 5-150 мкм. Однородность материала обусловлена участием газовой фазы [3]. Процесс получения материалов и покрытий из них с помощью газотранспортных СВС реакций на подложке является, по существу, промежуточным между газофазным осаждением и диффузионным насыщением [4]. Недостатками способа являются ограниченные технологические возможности, низкая эффективность и экономичность процесса, связанная с высоким расходом порошковых материалов и высокими энергозатратами. Кроме того, описываемый способ не позволяет использовать его при формировании композиционных покрытий на длинномерных крупногабаритных изделиях и конструкциях, например в нестационарных полевых условиях при строительстве, ремонте и эксплуатации трубопроводов и других протяженных систем. Известно устройство для получения композиционных материалов из порошковых компонентов, которое позволяет получать эти материалы на поверхностях изделий в виде покрытий на них. Устройство включает средство подачи ускоряющего газа-носителя, систему управления рабочим процессом подачи ускоряющего потока газа-носителя и порошкового материала, узел загрузки и подачи порошкового материала, содержащий питатель-дозатор, распыливающий узел с камерой выравнивания газового потока и разгонным сверхзвуковым соплом [5]. Устройство позволяет получать композиционные материалы газодинамическим методом в виде покрытия на поверхности подложки, в качестве которой может быть какое-либо изделие или деталь, за счет высокой кинетической энергии частиц порошковых компонентов исходного материала, приобретаемой ими при взаимодействии с ускоряющим их сверхзвуковым потоком газа-носителя. Формирование покрытий и материалов из механических смесей газодинамическим методом позволяет получать композиционные материалы с различными физико-химическими и механическими свойствами. Недостатком этого устройства являются ограниченные технологические возможности при использовании порошковых материалов экзотермического состава. В случае использования такого типа порошковых материалов возникает возможность инициирования СВС реакции в объеме бункера питателя-дозатора по трактам подачи порошкового материала и сопловом распыляющем узле, что приводит к выходу из строя устройства и возможности возникновения неконтролируемой ситуации. Известно устройство для получения композиционных материалов из порошковых компонентов, предусматривающее формирование материала газодинамическим методом на подложке, в качестве которой может быть поверхность материала различных изделий или конструкций. Устройство включает средство подачи потока ускоряющего сжатого газа-носителя, систему запорно-регулирующей аппаратуры управления рабочим процессом подачи потока ускоряющего сжатого газа-носителя, средство подачи транспортирующего порошковые компоненты сжатого газа, систему запорно-регулирующей аппаратуры управления процессом газопорошковой взвеси, камеру выравнивания газового потока, соединенный с ней узел размещения и подачи порошковых компонентов, разгонное сверхзвуковое сопло и узел размещения подложки [6]. Недостатками устройства также являются его ограниченные возможности и неэффективность при использовании порошковых компонентов, способных в механических смесях взаимодействовать в режиме самораспространяющегося высокотемпературного синтеза в объеме бункера питателя-дозатора, в магистральных системах и распыляющем узле, что также приводит к неконтролируемой опасной ситуации. Способ по источнику информации [3] и устройство, описанное в источнике информации [6], являются наиболее близкими аналогами описываемого изобретения. Техническим результатом описываемого изобретения является повышение безопасности, эффективности и экономичности процесса получения композиционных материалов из порошковых компонентов, способных вступать в реакцию самораспространяющегося высокотемпературного синтеза при соударении с поверхностью материала изделия, что позволяет значительно расширить технологические возможности получения композиционных материалов газодинамическим методом на изделиях любой протяженности и формы в стационарных и полевых условиях при сохранении высоких показателей коэффициента использования исходных материалов, невысоких энергетических затратах и экологической чистоте процесса. Для достижения этого результата предложен способ, сущность которого заключается в приготовлении экзотермического состава путем подачи каждого порошкового компонента в индивидуальные потоки транспортирующего их сжатого газа с образованием газовзвеси и последующим ее вводом и смешиванием в потоке ускоряющего газа-носителя, переносе порошковых компонентов к подложке ускоряющим их газом-носителем путем ввода потоков газовзвеси к оси входной дозвуковой части разгонного сверхзвукового сопла с последующим их ускорением, а инициирование химического взаимодействия порошковых компонентов экзотермического состава осуществляется воздействием на подложку высокоскоростного потока порошковых компонентов в газе при соударении. При приготовлении экзотермического состава могут быть введены добавки для получения материалов различного химического состава, а также для регулирования скорости и температуры протекания самораспространяющегося высокотемпературного синтеза. Подачу газовзвеси во входную дозвуковую часть сверхзвукового разгонного сопла в ядро потока ускоряющего газа-носителя осуществляют по патрубку с каналами, имеющими косые срезы, причем подачу каждого порошкового компонента осуществляют из индивидуальных питателей-дозаторов, а для равномерного перемешивания и ускорения газовзвесь подают в разгонное сверхзвуковое сопло с удлиненной частью критического сечения. В качестве транспортирующего порошковые компоненты газа используют: азот, аргон, воздух, углекислый газ или их смеси, а в качестве газа-носителя используют газ или смесь газов, удовлетворяющих условиям проведения реакции СВС из группы: азот, аргон, гелий, углекислый газ, воздух. Инициирование химического взаимодействия в режиме самораспространяющегося высокотемпературного синтеза проводят в газошумоизолирующей камере в газовой среде натекающего газа до заданного давления. Для осуществления этого способа предусматривается устройство, сущность которого заключается в том, что оно содержит средство подачи ускоряющего сжатого газа-носителя, систему запорно-регулирующей аппаратуры управления рабочим процессом подачи ускоряющего газа-носителя, средство подачи транспортирующего порошковые компоненты сжатого газа, систему запорно-регулирующей аппаратуры управления процессом подачи газопорошковой взвеси, нагреватель ускоряющего газа-носителя, камеру выравнивания газовых потоков, соединенный с ней узел размещения и подачи порошковых компонентов, выполненный в виде индивидуальных, по меньшей мере, двух питателей-дозаторов из материала, не вступающего во взаимодействие с порошковыми компонентами экзотермического состава, и соединенный с системой регулирования концентрацией порошковых компонентов; камера выравнивания снабжена установленным на ее входе многоканальным штуцером с многоканальным патрубком ввода газопорошковой взвеси, размещенным внутри камеры и имеющим каналы с косым срезом для направления потока газовзвеси к оси входной дозвуковой части разгонного сверхзвукового сопла, узел размещения подложки снабжен газошумоизолирующей камерой протекания реакции, а разгонное сверхзвуковое сопло выполнено с удлиненной частью критического сечения исходя из соотношения L/dкp

Формула изобретения
1. Способ получения композиционных материалов и покрытий из порошков, включающий приготовление экзотермического состава из порошковых компонентов, его газотранспортный перенос на подложку и инициирование на ней химического взаимодействия порошковых компонентов в режиме самораспространяющегося высокотемпературного синтеза (СВС), отличающийся тем, что приготовление экзотермического состава осуществляют путем подачи каждого из порошковых компонентов в индивидуальные потоки транспортирующего их сжатого газа с образованием газовзвеси и последующим ее вводом и смешиванием в потоке ускоряющего газа-носителя, перенос порошковых компонентов на подложку проводят газовым потоком ускоряющего их газа-носителя путем подачи потока газовзвеси к оси входной дозвуковой части сверхзвукового сопла и последующего их ускорения в разгонном сверхзвуковом сопле, а инициирование химического взаимодействия порошковых компонентов экзотермического состава в режиме СВС осуществляют воздействием на подложку высокоскоростного потока порошковых компонентов в газе. 2. Способ по п. 1, отличающийся тем что при приготовлении экзотермического состава вводят добавки для получения материалов различного химического состава, а также для регулирования скорости и температуры протекания реакции самораспространяющегося высокотемпературного синтеза. 3. Способ по любому из пп. 1, 2, отличающийся тем, что в качестве транспортирующего газа используют газ или смесь газов из группы: воздух, азот, углекислый газ, аргон. 4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве ускоряющего газа-носителя используют газ или смесь газов из группы: воздух, азот, углекислый газ, аргон, гелии. 5. Способ по любому из пп. 1-4, отличающийся тем, что ускорение потока газовзвеси проводят в разгонном сверхзвуковом сопле с удлиненной частью критического сечения. 6. Способ по любому из пп. 1-5, отличающийся тем, что подачу потока газовзвеси к оси входной дозвуковой части разгонного сверхзвукового сопла осуществляют по патрубку с каналами, имеющими косые срезы. 7. Способ по любому из пп. 1-6, отличающийся тем, что подачу каждого из порошковых компонентов в поток транспортирующего их газа проводят из индивидуальных питателей-дозаторов. 8. Способ по любому из пп. 1-7, отличающийся тем, что инициирование химического взаимодействия в режиме самораспространяющегося высокотемпературного синтеза проводят в газошумоизолирующей камере в газовой среде натекающего газа до заданного давления. 9. Устройство для получения композиционных материалов и покрытий из порошков, включающее средство подачи потока ускоряющего сжатого газа-носителя, средство подачи потока транспортирующего порошковые компоненты сжатого газа, систему запорно-регулирующей аппаратуры управления процессом подачи газопорошковой взвеси, нагреватель ускоряющего газа-носителя, камеру выравнивания газовых потоков, соединенный с ней узел размещения и подачи порошковых компонентов, разгонное сверхзвуковое сопло и узел размещения подложки, отличающееся тем, что оно снабжено системой регулирования концентрации порошковых компонентов в потоке транспортирующего газа, узел размещения и подачи порошковых компонентов выполнен в виде отдельных, по меньшей мере, двух питателей-дозаторов из материала, не взаимодействующего с порошковыми компонентами, и соединен с системой регулирования концентрации последних, камера выравнивания газовых потоков снабжена установленным на ее входе многоканальным штуцером с многоканальным патрубком подачи газопорошковой взвеси, размещенным внутри камеры и имеющим каналы с косым срезом для направления потока газовзвеси к оси входной дозвуковой части разгонного сверхзвукового сопла, узел размещения подложки снабжен газошумоизолирующей камерой, а разгонное сверхзвуковое сопло выполнено с удлиненной частью критического сечения. 10. Устройство по п. 9, отличающееся тем, что удлиненная часть критического сечения сопла выполнена в соответствии с соотношением L/dкр
РИСУНКИ
Рисунок 1, Рисунок 2