Способ определения теплоемкости полимеров при постоянном давлении
Изобретение относится к измерительной технике. Образец помещают в конденсаторный первичный измерительный преобразователь, расположенный в микрокалориметре, измеряют средний квадрат напряжения электрических флуктуаций, диэлектрическую проницаемость и коэффициент диэлектрических потерь, обусловленные внутренним электромагнитным полем, для двух моментов времени нагрева и вычисляют удельную теплоемкость полимера при постоянном давлении. Технический результат - повышение точности измерений. 1 ил.
Изобретение относится к измерительной технике и может быть использовано при производстве высокомолекулярных соединений, а также для прогнозирования изменения физических свойств полимеров при различных условиях эксплуатации.
Известны способы измерения удельной теплоемкости полимеров при постоянном давлении ( см. Кикоин А.К., Кикоин И.К. Молекулярная физика. - М.: Наука, 1976. - 480 с.). В калориметр помещают исследуемое вещество - образец с намотанным на нем электрическим нагревателем, являющимся в то же время термометром сопротивления, контактирующим с образцом. Образец помещают в оболочку, внутри которой может быть создан высокий вакуум. Не создавая вакуума внутри калориметра с образцом, его помещают в термостат и нагревают до той температуры, при которой должны быть проведены измерения. После этого пространство внутри калориметра откачивают, создавая вакуум и тем самым изолируют образец от термостата. Затем через нагреватель в течение определенного времени пропускают электрический ток, измеряя разность потенциалов на его концах и силу тока в нем. С помощью нагревателя-терморезистора измеряют вызванное действием нагревателя повышение температуры образца и рассчитывают удельную теплоемкость по формуле













Диэлектрическая проницаемость






Поэтому

Фиксируя время нагрева t1 и t2 при известной мощности P нагрева образца с учетом (1), (4), (5) для удельной теплоемкости полимерного диэлектрика получаем выражение (2). На чертеже представлена блок-схема устройства, реализующего предлагаемый способ измерения удельной теплоемкости полимеров. Исследуемый образец помещают в конденсаторный первичный измерительный преобразователь 1, который представляет собой два дисковых электрода, помещенных в микрокалоримотр. Потенциальный электрод расположен в цилиндрическом экране, на который намотан проволочный нагреватель. Вся конструкция помещается во внешний экран и изолируется от него слоем асбеста. Тепловой режим нагрева задается блоком 2. Средний квадрат напряжения электрических флуктуаций на зажимах преобразователя 1 измеряется с помощью малошумящего усилителя 3 и селективного нановольтметра 4. Контроль температуры в микрокалориметре осуществляется с помощью блока 5. Предлагаемый способ определения удельной теплоемкости полимеров при постоянном давлении позволяет существенно расширить экспериментальные возможности анализа полимерных материалов.
Формула изобретения

где Р - мощность нагрева;
t1, t2 - моменты времени, для которых измеряют средние квадраты напряжения электрических флуктуаций



m - масса образца;

kВ - постоянная Больцмана;
D - диаметр потенциального электрода;
d - толщина образца;
f - частота;


РИСУНКИ
Рисунок 1
Похожие патенты:
Изобретение относится к области измерительной техники
Устройство для измерения теплопроводности // 2096773
Изобретение относится к области технической физики и предназначено для измерения теплопроводности твердых тел, пористых материалов, насыщенных жидкими растворами расплавов жидких растворов органических веществ, жидких растворов солей, кислот и щелочей, несмешивающихся жидких растворов различных концентраций в интервале температур (- 100oC) (500oC) и различных давлений, включая окрестности фазовых переходов и критического состояния вещества
Изобретение относится к теплофизическим измерениям и может быть использовано для определения теплопроводности различных материалов
Изобретение относится к области исследования теплофизических характеристик и механических свойств упругих однородных изотропных материалов путем приложения к ним статических нагрузок и предназначено для определения физико-механических и теплофизических свойств на одном образце
Изобретение относится к теплофизическим измерениям и может найти применение в отраслях промышленности, связанных с разработкой и изготовлением тепловых машин различного назначения
Способ препарации поверхности для экспериментального определения коэффициентов теплоотдачи // 1807363
Изобретение относится к способам тепловых испытаний, в частности экспериментальных исследований теплоотдачи и может быть использовано, например, при измерении коэффициентов теплоотдачии в проточной части газовых турбин, Сущность способа; термопары монтируют в медные цилиндры, которые устанавливают в предварительно выполненные отверстия заподлицо с исследуемой поверхностью, наносятна нее слой электроизоляции, а на него - электропроводный слой
Изобретение относится к количественному термическому анализу, в частности к лабораторным измерительным приборам для определения фазового состава химически несвязанной воды в мерзлых грунтах, и может быть использовано в инженерных изысканиях
Устройство для определения октанового числа // 1714476
Изобретение относится к автоматизации исследования свойств нефтепродуктов, а именно к устройствам для автоматизации измерения октанового числа, и может быть использовано в нефтеперерабатываю1цей инефтехимической промышленности
Изобретение относится к технике для измерения состава двухкомпонентной среды и может быть применено в системах измерения и контроля в различных технологических процессах, например, при измерении состава и концентрации, уровня, массы и т.д
Лабораторная установка по термодинамике // 2202107
Изобретение относится к способам определения коэффициента теплопроводности твердых тел
Изобретение относится к области термической обработки стали и сплавов с целью повышения их механических свойств и может быть применено для построения кадастра жидкостей по их охлаждающей способности
Изобретение относится к области автомобилестроения, в частности к испытаниям транспортного средства по определению тепловых условий внутри кабины
Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в бомбовых калориметрах переменной температуры для определения теплоты сгорания топлива
Изобретение относится к области термической обработки стали и сплавов для повышения их механических свойств
Способ определения теплоемкости материала одновременно с определением его температурного расширения // 2439511
Изобретение относится к теплофизическим измерениям
Изобретение относится к области измерений свойств и тестирования материалов, в частности, к способам определения магнитокалорического эффекта (МКЭ)