Способ контролируемого диспергирования струй жидкости и устройство для его осуществления
Изобретение предназначено для получения монодисперсных капель из струй жидкости. Способ включает подачу множества первых струй 4 жидкости с установившимся течением в большое количество взаимно независимых камер 7, расположенных на перфорированной стенке 8, образование в этих камерах 7 вблизи перфорированной поверхности столба 10 жидкости, прохождение жидкости через перфорированную поверхность с образованием множества вторых струй 6 жидкости и периодическое изменение с заданной частотой потока количества движения жидкости, поступающей в данную камеру 7 для создания в жидкости возмущений с заданной амплитудой, например периодическое изменение давления жидкости вблизи стенки 8. Достигается получение монодисперсных капель заданного размера. 3 с. и 32 з.п. ф-лы, 4 ил.
Настоящее изобретение относится к способу регулируемого диспергирования струй жидкости для получения в основном монодисперсных капель и к устройству для осуществления способа.
Ниже в описании и формуле изобретения под выражением "в основном монодисперсных капель" подразумеваются по существу сферические капли жидкости, имеющие в основном одинаковый диаметр. Известно, что в последнее время для решения проблем, связанных с гранулированием расплавленных материалов, представляющих собой более или менее вязкую жидкость, например, при производстве удобрений, особую остроту приобрела необходимость разработки такого способа регулируемого диспергирования струй жидкости, который, с одной стороны, обеспечил бы получение в основном монодисперсных капель, а с другой стороны, обладал бы необходимой надежностью, был бы прост в осуществлении, не требовал большого расхода энергии и отличался низкими эксплуатационными затратами. В дальнейшем в описании под "гранулированием" понимается процесс, заключающийся в пропускании находящегося в жидком состоянии расплавленного материала через множество отверстий с образованием соответствующих струй жидкости, которые диспергируются во множество капель, которые при охлаждении затвердевают и превращаются в твердые гранулы. Обычно отвердение капель происходит при их свободном падении в противотоке воздуха в соответствующем устройстве, называемом гранулирующей колонной. Такой процесс основан на том, что струи жидкости диспергируются во множество капель в результате динамической неустойчивости струи, определяемой ее поверхностным натяжением, в частности тогда, когда амплитуда колебаний струи жидкости достигает значения, равного радиусу струи. Такая динамическая неустойчивость струи зависит от различных факторов, как внешних, например, от возмущений, создаваемых трением воздуха, так и от внутренних, в частности от турбулентности жидкости. Для решения указанной выше проблемы были предложены различные способы получения в основном монодисперсных капель путем регулируемого диспергирования струи жидкости за счет создания в ней возмущений с заданной амплитудой, которая выбирается таким образом, чтобы длина волны колебаний струи была больше длины окружности струи. Было установлено, что для однородного и регулярного диспергирования струи жидкости путем возбуждения в ней колебаний необходимо, чтобы длина волны возбуждаемых в струе колебаний удовлетворяла следующим условиям: 7






- образование в этих камерах вблизи перфорированной стенки столба жидкости;
- прохождение жидкости через перфорированную стенку с образованием множества вторых струй жидкости;
- периодическое изменение с заданной частотой потока количества движения жидкости, поступающей в данную камеру, для создания в находящейся в этой камере жидкости возмущений с заданной амплитудой, представляющих собой периодическое изменение давления жидкости вблизи перфорированной стенки, которое передается вторым струям жидкости и обеспечивает их регулируемое диспергирование на множество в основном монодисперсных капель. В дальнейшем в настоящем описании и в формуле изобретения выражение "установившееся течение струи жидкости" означает, что расход и скорость такой струи остаются во времени постоянными. Далее в описании и в формуле изобретения выражение "взаимно независимые камеры" означает, что камеры гидравлически отделены друг от друга. Преимуществом предлагаемого в настоящем изобретении способа является возможность образования в основном монодисперсных капель при установившемся режиме подачи жидкости, из которой формируются вторые струи, и при одновременном возбуждении соответствующим образом в этой жидкости колебаний давления. Достигается это, в частности, за счет разделения перфорированной стенки на большое количество камер и подачи в эти камеры множества первых струй жидкости. При проведении процесса в таких условиях неожиданно было обнаружено, что для простого и надежного регулируемого или контролируемого диспергирования вторых струй жидкости, вытекающих из перфорированной стенки, вполне достаточно соответствующим образом изменить поток количества движения жидкости, подаваемой в определенную камеру, сохранив при этом постоянным поток количества движения всех первых струй жидкости, подаваемых к перфорированной стенке в установившемся режиме. При этом целесообразно, чтобы изменение потока количества движения жидкости, поступающей в определенную камеру, происходило периодически с такими временными интервалами, чтобы во вторых струях жидкости возникали эффективные возмущения с длиной волны, превышающей диаметр их окружности и предпочтительно лежащей в пределах, указанных в приведенной выше формуле (1). Способ, предлагаемый в настоящем изобретении, лишен недостатков, присущих известным способам, позволяет просто и эффективно, используя для этого поток подаваемой к перфорированной стенке жидкости с установившимся течением, сформировать вторые струи жидкости и обеспечить их регулируемое диспергирование. В предпочтительном варианте изобретения камеры перфорированной стенки располагаются рядом друг с другом, а поток количества движения жидкости, поступающей в данную камеру, отличается от потока количества движения жидкости, поступающей в соседнюю камеру. В этом варианте изобретения изменение потока количества движения жидкости, поступающей в каждую камеру, осуществляется предпочтительно за счет приведения перфорированной стенки в движение относительно расположенного перед ней распределителя жидкости, в котором формируются первые струи. Относительное движение перфорированной стенки создается в процессе ее перемещения относительно распределителя при постоянном расстоянии между ними. Эффективные возмущения, передающиеся вторым струям, целесообразно генерировать путем периодического изменения с заданной частотой количества первых струй жидкости, попадающих в заданную камеру. В оптимальном варианте первые струи жидкости движутся от центра распределителя к камерам перфорированной стенки, которая имеет по существу форму трубы, расположенной вокруг распределителя на одной с ним оси. Предпочтительно перфорированную трубчатую стенку выполнить вращающейся вокруг своей оси, а камеры вытянуть в продольном направлении вдоль оси вращения. Такой способ позволяет распределить диспергируемые вторые струи в радиальном направлении и сформировать по всей окружности трубы "дождь", состоящий из в основном монодисперсных капель, расходящихся друг от друга в радиальном направлении. Предпочтительно первые струи жидкости, поступающие в камеры, направить под прямым углом к свободной поверхности собирающегося на перфорированной стенке столба жидкости с тем, чтобы избежать образования вторичной турбулентности вблизи перфорированной стенки, которая может оказать отрицательное влияние на регулируемое диспергирование вторых струй. В соответствии с предлагаемым в настоящем изобретении способом во избежание возникновения в жидкости колебаний со второй гармоникой частоты возбуждения целесообразно, чтобы возмущения, возникающие в результате периодических изменений потока количества движения жидкости, подаваемой в данный сектор, описывались синусоидальной функцией. Задача изобретения решается также с помощью предложенного устройства для диспергирования струй жидкости и получения в основном монодисперсных капель, включающего:
- первый распределитель жидкости, который имеет перфорированную стенку и формирует множество первых струй жидкости с установившимся течением;
- второй распределитель жидкости, установленный на заданном расстоянии от первого распределителя и разделенный на большое количество камер, в которые попадают первые струи жидкости и которые имеют одинаковый объем, взаимно независимы и имеют перфорированную стенку, которая по существу параллельна перфорированной стенке первого распределителя и используется для формирования множества вторых струй жидкости;
- при этом первый и второй распределители перемещаются друг относительно друга, в результате чего происходит периодическое изменение с заданной частотой потока количества движения жидкости, попадающей в данную камеру, сопровождающееся возникновением в этой жидкости возмущений с заданной амплитудой, представляющих собой периодическое изменение давления, передающегося вторым струям жидкости, под действием которого происходит регулируемое диспергирование вторых струй жидкости на множество в основном монодисперсных капель. Отличительные особенности и преимущества настоящего изобретения рассмотрены ниже в описании примера его выполнения со ссылками на приложенные к описанию чертежи, где:
на фиг. 1 показано схематичное изображение продольного сечения деталей устройства, предназначенного для регулируемого диспергирования струй жидкости предлагаемым в настоящем изобретении способом,
на фиг. 2 - схематичное изображение продольного сечения предлагаемого в настоящем изобретении устройства для регулируемого диспергирования струй жидкости,
на фиг.3 - поперечное сечение плоскостью А-А устройства по фиг.2,
на фиг. 4 - схематичное изображение продольного сечения предлагаемого в настоящем изобретении аппарата для регулируемого диспергирования струй жидкости. Изображенное на фиг.1-4 предлагаемое в настоящем изобретении устройство 1 предназначено для регулируемого диспергирования струй жидкости и с успехом может использоваться для гранулирования расплавленных материалов, например расплавленной мочевины при производстве удобрений. Для более наглядного пояснения основных принципов предлагаемого в настоящем изобретении способа регулируемого диспергирования струи жидкости на фиг.1 показана только часть предназначенного для этой цели устройства 1. Устройство 1 имеет первый распределитель 2 с перфорированной стенкой 3, предназначенный для формирования множества струй 4 жидкости с установившимся течением. Предпочтительно для формирования таких струй 4 использовать соответствующие отверстия в перфорированной стенке 3, сгруппировав их по существу в параллельные ряды, вытянутые в данном сечении распределителя 2 в продольном направлении перпендикулярно плоскости фиг.1. В альтернативном варианте вместо отверстий в перфорированной стенке 3 можно выполнить большое количество по существу продольных параллельных щелей, вытянутых также в направлении, перпендикулярном плоскости фиг.1. В этом случае формируемые сплошные струи 4 вытянуты вдоль указанных выше щелей и имеют очень небольшую толщину. Иначе говоря, каждой показанной на фиг.1 струе 4 соответствует либо ряд отверстий, либо одна продольная щель. На определенном расстоянии от первого распределителя 2 расположен второй распределитель 5, предназначенный для формирования вторых струй 6 жидкости. Второй распределитель 5 разделен на расположенные рядом друг с другом и обозначенные одной и той же позицией камеры 7, в которые могут попадать первые струи 4, причем эти камеры выполнены с одинаковым объемом, независимы друг от друга и имеют перфорированную стенку 8, по существу параллельную перфорированной стенке 3 первого распределителя 2. Камеры 7 имеют также соответствующие боковые стенки 9, которые расположены под прямым углом к перфорированной стенке 8 и делают камеры 7 гидравлически независимыми друг от друга. Позицией 10 обозначена верхняя граница столба жидкости, собирающейся у перфорированной стенки 8 и которая лежит в плоскости, перпендикулярной струям 4. Первый 2 и второй 5 распределители соответственно перемещаются друг относительно друга, при этом расстояние между ними всегда остается постоянным. В примере, показанном на фиг.1, второй распределитель 5 перемещается относительно первого распределителя 2 в направлении стрелки 11. Предпочтительно все отверстия 12 в перфорированной стенке 8 выполнить одинаковыми со скругленными входными кромками. Такая форма отверстий снижает вероятность возникновения в струях 6 возмущений, которые могли бы оказать отрицательное влияние на диспергирование струй. Как показано на фиг.1, ширина L камеры 7 отличается от величины, кратной расстоянию d между двумя первыми струями 4, формируемыми распределителем 2, измеренному в направлении 11 относительного движения распределителей. Следует отметить, что расстояние d в примерах, показанных на фиг.2-4, представляет собой угловое расстояние, постоянное для всего распределителя 2. Предпочтительно ширина L камеры 7 составляет
L=n

где n обозначает целое число в пределах, например, от 1 до 100. В дальнейшем в описании и в формуле изобретения под значением n подразумевается минимальное количество рядов отдельных струй жидкости или количество сплошных вытекающих из щелей струй жидкости, которые попадают в данную камеру 7. Например, для случая, показанного на фиг.1, n равно 2. Приведенная выше формула позволяет создать максимальные по интенсивности пульсации давления в жидкости вблизи отверстий 12. При перемещении второго распределителя 5 относительно первого распределителя 2 в направлении стрелки 11, т.е. при его равномерном прямолинейном движении в горизонтальной плоскости, количество струй 4, поступающих в данную камеру 7, меняется периодически с частотой, которая зависит от скорости движения, и отличается от количества струй 4, поступающих в соседнюю камеру 7. В варианте по фиг.1 количество струй 4, поступающих в данную камеру 7 в плоскости изображенного на фиг.1 поперечного сечения, меняется от 2 до 3 и наоборот. В результате этого также периодически изменяется и поток количества движения жидкости, попадающей в данную камеру 7, в результате чего в жидкости, находящейся рядом с отверстиями 12 в перфорированной стенке 8, периодически меняется давление, что обеспечивает регулируемое диспегирование вторых струй 6 на множество в основном монодисперсных капель (не показаны). Очевидно, что пульсирующее давление жидкости рядом с перфорированной стенкой 8 передается струям 6, вытекающим из распределителя 5. Величину этого давления (Р) можно определить по следующей формуле:
Р=D




где D обозначает плотность жидкости, h обозначает высоту столба жидкости в заданной камере 7, g обозначает ускорение свободного падения, m обозначает количество струй 4 жидкости, попадающих в данную камеру 7, М обозначает расход, выраженный как масса жидкости в единицу времени струи 4 жидкости, v1 и v2 обозначают соответственно скорость жидкости в струях 4, поступающих к перфорированной стенке 8, и скорость жидкости непосредственно перед отверстиями 12 и А обозначает площадь перфорированной стенки 8 камеры 7. Обычно скорость v2 имеет очень небольшое значение, которое в несколько десятков или даже сотен раз меньше значения скорости v1. В соответствии с настоящим изобретением периодическое во времени изменение давления Р в заданной камере 7, необходимое, например, для возбуждения в струях 6 жидкости периодических эффективных возмущений с целью контроля их диспергирования, целесообразно создавать путем соответствующего изменения потока количества движения жидкости, поступающей в данную камеру, в частности путем регулируемого с высокой точностью изменения по крайней мере одной из независимых переменных m, М и v1 в формуле (3), сохраняя, однако, постоянными во времени расход М и скорость v1 всех струй 4, вытекающих из распределителя 2. В рассматриваемых примерах, в частности, периодическое изменение давления в жидкости, вытекающей из отверстий 12 данной камеры, происходит из-за периодического изменения количества m струй 4, попадающих в эту камеру. Если учитывать пространственное распределение показанных на фиг.1 струй и рассматривать их в направлении, перпендикулярном плоскости фиг.1, т.е. в виде рядов струй или в виде одной сплошной тонкой струи, то количество таких рядов струй или отдельных тонких струй, попадающих в данную камеру 7, изменяется от n до n+1, где n обозначает целое число, имеющее указанные выше значения. Интенсивность пульсаций давления Р определяется отношением максимального изменения давления, создаваемого в жидкости вблизи перфорированной стенки 8, к среднему значению давления. Обычно такое отношение определяют как " импульс давления". В алгебраическом виде при изменении только значения m максимальное изменение давления определяется по следующей формуле:




где Р обозначает давление жидкости вблизи отверстий 12, a m, M, v1, v2 и А имеют те же значения, что и в формуле (3). Среднее значение давления определяется следующей формулой:
P(сре днее) = D




Значения всех переменных в этой формуле те же, что и в формуле (3). Если представить отношение 2/(2n+1) как f(n), то получают следующую формулу для определения импульса давления:



Заменив в формуле (6) g



Подставив в качестве примера в формулу (7) значения переменных v=2 м/с, v1= 3,5 м/с, v2= 0,1 м/с (среднее значение) и n=4, получают, что импульс



d=6

где d обозначает угловое расстояние в шестидесятиричных градусах, измеренное в направлении относительного движения, между двумя соседними отверстиями в первом распределителе 2, N обозначает скорость вращения второго распределителя в об/мин, a F обозначает частоту (выраженную в Гц) периодических возмущений, необходимых для регулирования диспергирования струй 6. Коэффициент 6 в приведенной выше формуле позволяет выразить угловое расстояние в шестидесятиричных градусах. Так, например, если в вытекающих из отверстий 12 струях 6 необходимо создать периодические возмущения с частотой F, равной 700 Гц, при скорости вращения N, равной 280 об/мин, то угловое расстояние d должно быть равно 2,4o, что соответствует 150 продольным щелям 13(360/2,4=150). Позициями 14, 15 и 16 обозначены соответственно труба для подвода жидкости к первому распределителю 2, вал для вращения второго распределителя 5 относительно первого с регулируемой скоростью и верхний уровень столба жидкости, находящейся в первом распределителе 2. На внутренней поверхности перфорированной стенки 8 второго распределителя 5 целесообразно разместить соответствующее оборудование (не показано) для сглаживания турбулентности, возникающей при работе устройства 1 в находящейся в камере 7 жидкости. Методы сглаживания турбулентности, например применение сеток, хорошо известны и не требуют подробного описания. Используя известные способы, можно добиться ламинарного течения вторых струй 6. Для того чтобы не поворачивать боковые стенки 9, которые лежат на пути движения струй 4 и частично гасят их кинетическую энергию, эти стенки должны иметь очень небольшую толщину, составляющую небольшую часть от расстояния d между двумя соседними струями 4. Обычно толщина этих стенок не превышает половины расстояния d. В альтернативном варианте предлагаемого устройства (не показан) количество m струй 4 жидкости, попадающих в данную камеру, изменяется периодически во времени за счет того, что стенки 9 имеют относительно большую толщину, составляющую от 0, 25 до 0,75, предпочтительно 0,5, от расстояния d между двумя соседними струями 4. В этом случае ширина L камеры 7 выбирается кратной расстоянию d, т.е. L=n

Формула изобретения
L= n

где L и d обозначают соответственно ширину камер (7) и измеренное в направлении относительного движения расстояние между двумя соседними первыми струями (4), попадающими в камере (7), а n обозначает целое число. 12. Способ по пп. 7 и 8, отличающийся тем, что ширина камер (7) кратна измеренному в направлении относительного движения расстоянию между двумя соседними первыми струями (4), попадающими в камеры (7), причем это расстояние одинаково на всей поверхности распределителя (2). 13. Способ по п. 3, отличающийся тем, что первые струи (4) жидкости направляются в камеры (7) в виде по существу центробежного потока, вытекающего из распределителя (2) в направлении перфорированной стенки (8), которая выполнена в виде трубы и расположена вокруг распределителя (2) на одной с ним оси. 14. Способ по п. 13, отличающийся тем, что он также предусматривает вращение перфорированной стенки (8) вокруг собственной оси, при этом камеры (7) вытянуты на стенке (8) в продольном направлении. 15. Способ по п. 14, отличающийся тем, что измеренное в направлении относительного движения расстояние (d) между двумя соседними первыми струями (4) жидкости, попадающей в камеры (7), определяется по формуле
d= 6

где d обозначает измеренное в направлении относительного движения угловое расстояние в шестидесятеричных градусах между двумя соседними первыми струями (4) жидкости, попадающими в камеры (7), N обозначает скорость вращения перфорированной стенки (8) в об/мин, а F обозначает выраженную в Гц частоту периодических возмущений, необходимых для регулируемого диспергирования вторых струй (6). 16. Способ по п. 1, отличающийся тем, что первые струи (4) жидкости направлены перпендикулярно к свободной поверхности столба (10) жидкости, находящейся в камерах (7). 17. Способ по любому из предыдущих пунктов, отличающийся тем, что волновая функция, полученная в результате периодического изменения количества движения жидкости, попадающей в каждую камеру (7), имеет синусоидальный характер. 18. Устройство для регулируемого диспергирования струй жидкости для получения в основном монодисперсных капель, включающее: первый распределитель (2), который имеет перфорированную стенку (3) и формирует множество первых струй (4) жидкости с установившимся течением; второй распределитель (5) жидкости, установленный на заданном расстоянии от первого распределителя (2) и разделенный на большое количество камер (7), в которые попадают первые струи (4) жидкости и которые имеют одинаковый объем, взаимно независимы и имеют перфорированную стенку (8), которая по существу параллельна перфорированной стенке (3) первого распределителя (2) и используется для формирования множества вторых струй (6) жидкости; при этом первый и второй распределители (2,5) перемещаются друг относительно друга, в результате чего происходит периодическое изменение с заданной частотой количества движения жидкости, поступающей в данную камеру (7), сопровождающееся возникновением в находящейся в этой камере (7) жидкости возмущений с заданной амплитудой, представляющих собой периодическое изменение давления, которое передается вторым (6) струям жидкости и под действием которого происходит регулируемое диспергирование вторых струй жидкости на множество в основном монодисперсных капель. 19. Устройство по п. 18, отличающееся тем, что ширина камер (7) не кратна измеренному в направлении относительного движения расстоянию между двумя соседними отверстиями в первом распределителе (2), причем это расстояние одинаково на всей поверхности первого распределителя (2). 20. Устройство по п. 19, отличающееся тем, что ширина (L) камер (7) определяется следующим образом:
L= n

где L и d обозначают соответственно ширину камер (7) и измеренное в направлении относительного движения расстояние между двумя соседними отверстими в первом распределителе (2), а n обозначает целое число. 21. Устройство по п. 18, отличающееся тем, что ширина камер (7) кратна измеренному в направлении относительного движения среднему расстоянию между двумя соседними отверстиями в первом распределителе (2), при этом эти отверстия неравномерно распределены по поверхности первого распределителя (2). 22. Устройство по п. 18, отличающееся тем, что ширина камер (7) кратна измеренному в направлении относительного движения расстоянию между двумя соседними отверстиями в первом распределителе (2), при этом расстояние одинаково на всей поверхности первого распределителя (2). 23. Устройство по п. 22, отличающееся тем, что площадь поперечного сечения отверстий меняется периодически в направлении относительного движения. 24. Устройство по п. 18, отличающееся тем, что первый и второй распределители (2, 5) имеют по существу трубчатую форму, а второй распределитель (5) расположен вокруг первого распределителя (2) на одной с ним оси. 25. Устройство по п. 24, отличающееся тем, что камеры (7) расположены в радиальном направлении и вдоль второго распределителя (5), который может свободно вращаться вокруг собственной оси. 26. Устройство по п. 25, отличающееся тем, что измеренное в направлении относительного движения расстояние (d) между соседними отверстиями первого распределителя (2) определяется по формуле
d= 6

где d обозначает измеренное в направлении относительного движения угловое расстояние в шестидесятеричных градусах между двумя соседними отверстиями первого распределителя (2), N обозначает скорость вращения второго распределителя в об/мин, а F обозначает выраженную в Гц частоту периодических возмущений, необходимых для регулируемого диспергирования вторых струй (6). 27. Устройство по п. 25, отличающееся тем, что отверстия в стенке (3) первого распределителя (2) выполнены в виде большого количества продольных щелей (13). 28. Устройство по п. 27, отличающееся тем, что щели (13) наклонены по отношению к оси вращения второго распределителя (5). 29. Устройство по п. 25, отличающееся тем, что отверстия в стенке (3) первого распределителя (2) объединены в параллельные ряды, которые наклонены к оси вращения второго распределителя (5). 30. Устройство по п. 25, отличающееся тем, что камеры (7) имеют соответствующие боковые стенки (9), которые установлены по радиусу на перфорированной стенке (8), при этом линии пересечения перфорированной стенки (8) и боковых стенок (9) наклонены к оси вращения второго распределителя (5). 31. Устройство по любому из пп. 18-30, отличающееся тем, что отверстия (12) в перфорированной стенке (8) второго распределителя (5) выполнены одинаковыми и имеют скругленные входные кромки. 32. Устройство по п. 18, отличающееся тем, что камеры (7) имеют соответствующие боковые стенки (9), которые расположены радиально на перфорированной стенке (8) второго распределителя (5) и имеют толщину от 0,25 до 0,75 от измеренного в направлении относительного движения расстояния d между двумя соседними отверстиями первого распределителя (2), причем это расстояние одинаково на всей поверхности первого распределителя (2), а ширина L камер (7) кратна этому расстоянию d. 33. Аппарат для регулируемого диспергирования струй жидкости для получения в основном монодиспергированных капель, отличающийся тем, что он состоит из множества расположенных одно над другим устройств (1) по любому из пп. 18-32. 34. Аппарат по п. 33, отличающийся тем, что образующие его устройства (1) имеют разный диаметр, который уменьшается по высоте аппарата сверху вниз. 35. Аппарат по п. 34, отличающийся тем, что диаметр каждого нижнего устройства (1) меньше приблизительно на 1/3 диаметра расположенного над ним устройства.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4