Способ импульсного возбуждения широкополосной антенной решетки и импульсная широкополосная антенная решетка
Изобретения относятся к области радиотехники, в частности к антенной технике, и могут использоваться при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы, использующих импульсы длительностью менее 2 нс. Они обеспечивают улучшение согласования (снижение КСВН - коэффициента стоячей волны по напряжению), повышают коэффициент полезного действия широкополосной антенной решетки (АР) при импульсном возбуждении. Для этого в способе импульсного возбуждения широкополосной АР синхронно преобразуют на каждом входе рупорного излучателя постоянное напряжение в импульсное электромагнитное поле, модулируют поле по пространственной амплитуде и фазе с учетом номера каждого элемента АР и его пространственного положения так, чтобы обеспечить заданное суммарное амплитудно-фазовое распределение и минимальное рассогласование по волновому сопротивлению. Широкополосная АР содержит n рупорных излучателей, размещенных в нескольких уровнях, каждый рупорный излучатель образован плавным переходом полосковой линии в рупорный излучатель решетки в Е и Н плоскости, все рупорные излучатели электрически замкнуты между собой, образуя единую пространственную апертуру антенной решетки, а каждый рупорный излучатель содержит формирователь импульсного сигнала, который преобразует постоянное напряжение в импульсный сигнал, выход формирователя импульсного сигнала нагружен на полосковую линию рупорного излучателя, а его вход является синхровходом рупорного излучателя. Техническим результатом является уменьшение потерь электромагнитного поля. 2 с.п. ф-лы, 11 ил.
Изобретения относятся к области радиотехники, в частности к антенной технике, и могут использоваться при проектировании антенных решеток для систем связи, локации и радиоэлектронной борьбы, реализуемых на принципах излучения коротких импульсов без несущей частоты.
Наиболее близким по технической сущности к заявляемому способу импульсного возбуждения широкополосной антенной решетки (прототипом) является способ возбуждения широкополосной антенной решетки (АР), описанный в Российском патенте (см. заявку 99118983/09(020263, МПК Н 01 Q 21/ 06, 1999, по которой принято решение о выдаче патента). В известном техническом решении: - преобразуют информативный сигнал в электромагнитное поле с линейной поляризацией, например, на полосковой линии; - разделяют полученное поле по амплитуде на n частей по числу рупорных излучателей в решетке; - модулируют каждую составляющую электромагнитного поля, полученную в результате трансформации по пространственной фазе так, чтобы получить минимальное рассогласование по волновому сопротивлению и заданное суммарное амплитудно-фазовое распределение, а параметры пространственной модуляции определяют из соотношений








bH1 - расстояние от оси решетки до вершины первого рупорного излучателя в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
DE1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
DH1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
N - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
М - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;

- модулируют поле в n электрически связанных рупорных излучателях по пространственной амплитуде и фазе с учетом номера каждого элемента антенной решетки и его пространственного положения так, чтобы обеспечить заданное суммарное амплитудно-фазовое распределение и минимальное рассогласование по волновому сопротивлению. В отличие от прототипа в предлагаемом способе перед модуляцией синхронно преобразуют на каждом входе рупорного излучателя постоянное напряжение в импульсное электромагнитное поле амплитудой u и длительностью

b2E1+b2H1



DA




n=N



bE1

bH1

D2A






где Ри - требуемая импульсная мощность излучения антенной решетки;
Rвx - входное сопротивление рупорного элемента решетки;


с - скорость света в вакууме;
Lpaб - минимальная дальность действия антенной решетки;
Da - максимально возможный размер антенной решетки. Предлагаемая импульсная широкополосная АР так же, как и прототип, содержит n рупорных излучателей, размещенных в нескольких уровнях, каждый рупорный излучатель образован плавным переходом полосковой линии в рупорный излучатель решетки в Е и Н плоскости, все рупорные излучатели электрически замкнуты между собой, образуя единую пространственную апертуру антенной решетки. В отличие от прототипа в предлагаемой импульсной широкополосной АР в каждый рупорный излучатель дополнительно введен формирователь импульсного сигнала, который преобразует постоянное напряжение в импульсный сигнал, выход формирователя импульсного сигнала нагружен на полосковую линию рупорного излучателя, а его вход является синхровходом, причем геометрические параметры антенной решетки рассчитывают из соотношений (5) - (10). Задачей, на решение которой направлены заявляемые способ и устройство, является снижение внутренних отражений электромагнитного поля и потерь в широкополосной антенной решетке при импульсном возбуждении. Совокупность общих и частных существенных признаков изобретений обеспечивает возможность решения задачи и достижения требуемого технического результата, а именно улучшение согласования (снижения КСВН - коэффициента стоячей волны по напряжению) и повышение коэффициента полезного действия (КПД) широкополосной антенной решетки при импульсном возбуждении. Действительно, согласование АР оценивается КСВН, который для качественных антенн не должен превышать заданного уровня во всем рабочем диапазоне частот. В свою очередь КСВН полностью определяется внутренними отражениями, возникающими на всех неоднородностях в АР. По этой причине снижение внутреннего отражения АР, достигающееся за счет исключения многократного деления импульсного сигнала, обеспечивает снижение КСВН и, следовательно, улучшение согласования. Это естественным образом приводит к снижению потерь и, следовательно, повышению КПД антенной решетки. Кроме того, размещение формирователя импульсного сигнала непосредственно на входе рупорного излучателя обеспечивает минимальное расстояние от точки формирования импульса до точки его излучения в пространство, что приводит к устранению паразитного эхо-сигнала, амплитуда которого (при большой импульсной мощности) оказывается соизмеримой с самим импульсным сигналом. Отметим, что в заявляемой АР используется импульсный сигнал. В этом случае соотношения для оптимальной АР (1) - (4) оказываются непригодны, поскольку не учитывают специфику излучения импульсных сигналов длительностью менее 2 нc. Исследование проблемы импульсного излучения таких сигналов позволило сформулировать условия для оптимальной импульсной АР в виде (5) - (10). В результате поиска не обнаружено информации, позволяющей сделать вывод об известности отличительных признаков заявляемых технических решений, следовательно, заявляемые технические решения соответствуют условию новизны. Из предшествующего уровня техники не известно влияние отличительных признаков заявляемых технических решений на достигаемый технический результат, следовательно, заявляемые технические решения соответствуют условию изобретательского уровня. Сущность изобретений раскрывается чертежами, где на фиг.1 - 3 и 9 поясняются основные принципы, заложенные в предлагаемый способ, на фиг.4 и 5 приведены варианты импульсной эквидистантной широкополосной антенной решетки, а на фиг.6 - 8 - возможные варианты исполнения элементов АР. На фиг.1 изображена зависимость предельного размера антенной решетки DA от минимальной дальности работы Lpaб для четырех значений длительности импульса




На фиг. 2 приведена схема расчета предельного размера антенной решетки DA. На фиг. 3 приведены результаты расчета зависимостей характеристик импульсной АР от параметров импульсного сигнала и свойств АР. На фиг.3,а показана аналитическая форма сигнала u длительностью 1 нc, а на фиг.3,б - экспериментально полученный импульсный сигнал. На фиг.3,в показан рассчитанный для сигнала u спектр. На фиг.3,г показаны результаты расчета эффективности









которая определяет относительную величину мощности излученной АР при ограничении ее рабочего диапазона частот интервалом
0


На фиг.3,г показан расчет функции
S(F)=1-Q(F), (13)
которая определяет величину мощности излученной АР при ограничении ее рабочего диапазона частот интервалом
F



Анализ полученных результатов позволяет установить следующее:
1. При частоте верхней отсечки по частоте
FВ= 2/

энергетическая эффективность АР (функция Q(F)) составляет 0,98. Непосредственно из (15) следует ограничение (5), если учесть, что длина волны



2. Зависимость функции S(F) в интервале 0


S(F) = 1-2


где FH измеряется в ГГц, a







В качестве исходных данных, обязательных при проектировании антенны, являются требуемые импульсная мощность РA, энергетическая эффективность








где



Pm= PA


На фиг. 10,б показан временной процесс появления первых двух паразитных импульсов. Период их следования определяется как
Tэс=2


В предлагаемом способе удается сделать расстояние между выходом ФИС 1 и апертурой АР минимальной. В этом случае паразитный сигнал находится рядом с полезным сигналом (фиг.11,а) и может быть устранен практически полностью подбором длительности синхроимпульса, запускающего ФИС 1 (фиг.11,б). Следовательно, условие (5) показывает, что максимальный линейный размер первого элемента решетки должен быть больше половины геометрической длины импульса, но в соответствии с (8) и (9) начальная база bE1 и bH1 не может превышать половины заданных линейных размеров апертуры элемента, поскольку в этом случае соседние элементы решетки должны отстоять друг от друга на некотором расстоянии, что не позволит обеспечить электрический контакт соседних элементов. Условие равенства в (8), (9) соответствует эквидистантной антенной решетке. Согласование АР на нижней рабочей частоте требует выполнения условия, при котором максимальный линейный размер АР больше половины максимальной длины волны рабочего диапазона частот. Математически настоящее условие при заданной энергетической эффективности может быть записано в виде (10). Отметим, что из всех условий жестко ограничительными являются условие (6) на максимальную эффективную апертуру АР и связанное с ним условие (10). Таким образом, предлагаемый способ позволяет устранить основные недостатки прототипа. Он обеспечивает высокоэффективное согласование АР, высокий КПД и устранение паразитного эхо-сигнала. Для реализации предлагаемого способа необходимо выполнить следующие операции:
- синхронно преобразовать на каждом входе рупорного излучателя постоянное напряжение в импульсное электромагнитное поле амплитудой u и длительностью

- промодулировать электромагнитное поле по пространственной амплитуде и фазе в каждом рупорном излучателе с учетом номера каждого элемента антенной решетки и его пространственного положения так, чтобы обеспечить заданное суммарное амплитудно-фазовое распределение и минимальное рассогласование по волновому сопротивлению. При этом параметры пространственной модуляции определяют из соотношений (5) - (10). Эта операция позволяет обеспечить согласование АР во всем рабочем диапазоне частот. В отличие от прототипа в заявляемом способе дополнительное преобразование на каждом входе рупорного излучателя постоянного напряжения в импульсное электромагнитное поле направлено на обеспечение согласования АР при импульсном возбуждении, повышение КПД и устранение паразитного эхо-сигнала. Импульсная широкополосная эквидистантная антенная решетка приведена на фиг.4 и 5 (вид сбоку). АР работает следующим образом. АР состоит из n=N





Формула изобретения

b2E1+b2H1



DA




n= N



bE1

bH1

D2A






где bE1 - расстояние от оси решетки до вершины первого рупорного излучателя в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
bН1 - расстояние от оси решетки до вершины первого рупорного излучателя в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
DE1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
DH1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
N - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
М - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
Ри - требуемая импульсная мощность излучения антенной решетки;
Rвх - входное сопротивление рупорного элемента решетки;


с - скорость света в вакууме;
Lраб - минимальная дальность действия антенной решетки;
DA - максимально возможный размер антенной решетки. 2. Импульсная широкополосная антенная решетка, содержащая n рупорных излучателей, размещенных в нескольких уровнях, каждый рупорный излучатель образован плавным переходом полосковой линии в рупорный излучатель решетки в Е и Н плоскости, все рупорные излучатели электрически замкнуты между собой, образуя единую пространственную апертуру антенной решетки, отличающаяся тем, что в каждый рупорный излучатель дополнительно введен формирователь импульсного сигнала, который преобразует постоянное напряжение в импульсный сигнал, выход формирователя импульсного сигнала нагружен на полосковую линию рупорного излучателя, а его вход является синхровходом, причем геометрические параметры антенной решетки рассчитывают из соотношений
b2E1+b2H1



DA




n= N



bE1

bH1

D2A






где bE1 - расстояние от оси решетки до вершины первого рупорного излучателя в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
bН1 - расстояние от оси решетки до вершины первого рупорного излучателя в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
DE1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
DH1 - линейный размер апертуры первого рупорного излучателя антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
N - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором магнитного поля Н;
М - число рупорных излучателей антенной решетки в плоскости, образованной оптической осью антенны и вектором электрического поля Е;
Ри - требуемая импульсная мощность излучения антенной решетки;
Rвх - входное сопротивление рупорного элемента решетки;


с - скорость света в вакууме;
Lраб - минимальная дальность действия антенной решетки;
DA - максимально возможный размер антенной решетки.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11