Способ формирования квазиортогонального кода и расширитель, использующий этот способ в системе мобильной связи
Изобретение относится к технике мобильной связи. Технический результат состоит в обеспечении минимальных взаимных помех. Заявлено устройство для формирования квазиортогональных кодов, обеспечивающих минимальные помехи с ортогональными кодами в системе мобильной связи, использующей ортогональные коды. Устройство включает в себя первый расширитель для расширения по меньшей мере одного входного сигнала квазиортогональными кодами, второй расширитель для расширения другого входного сигнала кодами Уолша и псевдошумовой (ПШ) расширитель для комплексного расширения выходных сигналов первого и второго расширителей ПШ последовательностями. Квазиортогональные коды отличаются тем, что значение частной корреляции с кодами Уолша не превышает минимального предельного значения частной корреляции. 4 с. и 11 з. п. ф-лы, 10 ил. , 6 табл.
Область техники Изобретение относится к системе мобильной связи, более конкретно к способу формирования квазиортогональных кодов и расширителю, использующему данный способ в системе мобильной связи.
Предшествующий уровень техники Обычно система множественного доступа с кодовым разделением каналов (МДКР) для увеличения пропускной способности каналов разделяет каналы путем использования ортогональных кодов. Например, разделение каналов путем использования ортогональных кодов имеет место в прямой линии связи, определенной стандартом IS-95/IS-95A. Этот способ разделения каналов может быть применен и для обратной линии связи IS-95/IS-95A посредством временного совмещения. На фиг. 1 показана прямая линия связи IS-95/IS-95A, в которой каналы разделяются с помощью ортогональных кодов. Согласно фиг. 1 каналы разделяются с помощью выделенных для них соответствующих ортогональных кодов Wi (где i= 0 - 63), которые обычно представляют собой коды Уолша. В прямой линии связи IS-95/IS-95A используются сверточные коды со скоростью кода R = 1/2, модуляция типа ДПФМ (двухпозиционная фазовая манипуляция) и полоса частот 1, 2288 МГц. Соответственно количество доступных каналов при этом составит 1,2288/(9,6 КГц
Фиг. 6 - блок-схема, иллюстрирующая способ формирования квазиортогональных кодов согласно другому аспекту настоящего изобретения;
Фиг. 7 - диаграмма, иллюстрирующая расширение каналов путем использования квазиортогональных кодов согласно настоящему изобретению;
Фиг. 8 - блок-схема системы мобильной связи, использующей квазиортогональные коды и коды Уолша согласно возможному варианту осуществления настоящего изобретения;
Фиг. 9 - блок-схема блока расширения ортогональными кодами и ПШ маскирования (819) по фиг. 8 с использованием квазиортогональных кодов для канала пилот-сигнала и канала управления и кодов Уолша для каналов трафика согласно возможному варианту осуществления настоящего изобретения; и
Фиг. 10 - блок-схема блока расширения ортогональными кодами и ПШ маскирования (819) с использованием кодов Уолша для канала пилот-сигнала и канала управления и квазиортогональных кодов для каналов трафика согласно возможному варианту осуществления настоящего изобретения. Подробное описание предпочтительных вариантов осуществления изобретения
Настоящее изобретение направлено на создание способа формирования квазиортогональных кодов, позволяющих минимизировать помехи с ортогональными кодами в системе МДКР, использующей ортогональные коды, для увеличения пропускной способности каналов системы и пропускной способности одиночной ячейки системы. Квазиортогональные коды в настоящем изобретении должны удовлетворять следующим условиям, описанным уравнениями с (1) по (3):



1 - Условие
где 1= 0, 1, 2, . . . , М-1;
Wk(t) представляет собой k-й ортогональный код длиной N (1


Si(t) представляет собой квазиортогональный код длиной N (1













В частности, если взять корреляцию между разными кодами Уолша длиной N, то полная корреляция между ними должна быть меньше минимального предельного значения полной корреляции









Исследования показали, что для удовлетворения вышеуказанных условий (1) и (2) можно использовать последовательности Касами (Kasami). В частности, семейство последовательностей Касами демонстрирует явно выраженное свойство взаимной корреляции между последовательностями Касами в определенной группе последовательностей Касами, а свойство полной корреляции семейства последовательностей Касами хорошо известно специалистам в данной области техники. Однако, что касается условия (3), то исследования по созданию последовательности, удовлетворяющей вышеуказанному условию (3), не проводились. Однако, для систем стандарта IS-95В или будущих систем МДКР, поддерживающих переменную скорость передачи данных, очень важно обеспечить удовлетворение условия (3). Во-первых, среди последовательностей длиной 22m существует 2m последовательностей Касами, удовлетворяющих условиям (1) и (2), включая саму m-последовательность. Набор из К последовательностей Касами может быть представлен следующим уравнением:
K = [S0(t), S1(t), . . . S2 m -l(t)] . . . , (4)
где t= 0, . . . , 22m-2, a S0(t) представляет m- последовательность. На фиг. 3 показано, что матрица Q может быть построена путем циклического сдвига последовательностей из набора К последовательностей Касами уравнения (4). Матрица Q имеет 2m*2m строк и 22m столбцов. Известно, что коды Уолша могут быть получены из первой 22m строки путем перестановки столбцов. Этим способом можно получить ортогональные коды длиной 2m и (2m-1)



Если сумма субпоследовательностей равна нулю при положительном результате проверки на этапе 513, то на этапе 514 генерируются ненулевые субпоследовательности [msub(t)= m((2m+1)t+1)] . При отрицательном результате проверки на этапе 513, т. е. если сумма субпоследовательностей не равна нулю, на этапе 515 определяется функция для перестановки столбцов последовательности Касами со сдвинутыми столбцами. В частности, определяется отображение



После этого в субпоследовательностях, сформированных на этапе 512, выполняется сдвиг столбцов для получения на этапе 516 2m-1 субпоследовательностей, что означает формирование полных последовательностей путем соединения субпоследовательностей. В результате, как показано на фиг. 5, последовательности определяются следующим образом:


Ha этапе 517 для построения новых последовательностей выполняется перестановка столбцов последовательностей, определенных на этапе 516, путем использования функции перестановки, определенной на этапе 515. Здесь можно сформировать столько же новых последовательностей, сколько имеется субпоследовательностей. То есть новые последовательности на этапе 517 можно представить следующим образом:


Затем на этапе 518 квазиортогональные коды перенумеровываются, как показано на фиг. 4, путем использования ei(t), определенных выше. То есть формируются квазиортогональные последовательности-кандидаты путем добавления к кодам Уолша значений с переставленными столбцами, при этом вышеупомянутые квазиортогональные последовательности-кандидаты удовлетворяют условиям, установленным уравнениями (1) и (2). Операция на этапе 518 может быть выражена следующим образом:



После формирования квазиортогональных последовательностей-кандидатов, удовлетворяющих уравнениям (1) и (2), процедура готова к выбору квазиортогональных кодов, удовлетворяющих условию согласно уравнению (3) (этап 519). Соответственно, после этапа 518 из квазиортогональных последовательностей-кандидатов путем экспериментов выбираются квазиортогональные коды, удовлетворяющие условию, установленному уравнением (3). Здесь ei(t), выбранная в соответствии со способом, описанным выше по фиг. 5, называется маской. Квазиортогональные коды, сформированные с помощью вышеописанной процедуры, показаны в Таблицах 3А и 3В. В Таблице 3А показаны ортогональные коды длиной 128, а в Таблице 3B показаны ортогональные коды длиной 256. В Таблицах 3А и 3B g(x) представлены коэффициенты характеристического полинома, используемого для формирования m-последовательности. На фиг. 6 показана блок-схема, иллюстрирующая способ формирования квазиортогональной последовательности-кандидата длиной 22m+1. На фиг. 6 этапы с 611 по 616 подобны этапам с 511 по 516, описанным выше для фиг. 5. После этапа 616 заново сформированные последовательности ei(t) повторяются дважды (этап 617), в результате чего формируются новые последовательности, представляемые следующим образом:

e'i(t)= ei(t)
e'i(t+22m)= ti(t)
После двойного повторения последовательности ei(t) будут иметь вид, показанный в Таблице 4, где последовательность e'i(t) имеет 2m-1 строк и 2m+1 столбцов. После этого на этапе 618 генерируются квазиортогональные коды путем использования последовательностей ei(t), генерируемых на этапе 617, где коды Уолша, будучи ортогональными кодами, выражаются следующим образом:



Ортогональные коды имеют либо все, либо ни одну из последовательности квазиортогональных кодов, формируемых в соответствии со способами, проиллюстрированными на фиг. 5 и 6. Кроме того, количество отобранных групп зависит от выбранной m-последовательности. В приведенной ниже Таблице 5 указаны вышеупомянутые состояния, а выбранные последовательности в данном описании определяются как квазиортогональные коды. Здесь e'i(t) представляет последовательность длиной 2m+1, а ei(t) представляет последовательность длиной 22m. Очевидно, что ei(t) может быть получена путем комбинации множества e'i(t). Хотя количество возможных комбинаций составляет (2m-1)


Вариант 1
В системе, обеспечивающей услуги связи с переменной скоростью передачи данных путем использования кодов Уолша, можно свободно использовать коды Уолша без каких-либо ограничений их длины, а также использовать все последовательности квазиортогональных кодов в качестве общей длины. Вариант 2
Можно построить два ортогональных набора, выбирая один из группы кодов Уолша и группы квазиортогональных кодов, и дать возможность двум группам поддерживать переменную скорость передачи данных. Вариант 3
Можно использовать группу кодов Уолша и квазиортогональную группу в качестве одной группы и дать возможность двум группам поддерживать переменную скорость передачи данных. В этом случае между группами квазиортогональных кодов может проявиться "свойство случайных кодов" (a random code property). Принимая во внимание три вышеупомянутых варианта, предпочтительно использовать квазиортогональные коды в соответствии с используемыми приложениями. То есть при использовании только кодов Уолша модулирующая сторона обменивается заранее согласованным номером ортогональных кодов с демодулирующей стороной. Однако при использовании ортогональных кодов и квазиортогональных кодов необходимо, чтобы модулирующая сторона обменивалась с демодулирующей стороной заранее согласованным номером ортогональных кодов и номером группы (индекс i матрицы ei(t)Q' на фиг. 4). В этом случае группа ортогональных кодов называется группой 0, и тогда последующие номера групп определяются вплоть до 2m-1. Рассмотрим способ использования группы квазиортогональных кодов в системе с переменной скоростью передачи данных в виде группы ортогональных кодов. Элементы группы квазиортогональных колов представляются суммой кода Уолша, соответствующего конкретному номеру кода Уолша, и квазимаски, соответствующей номеру квазиортогональной группы. В этом случае номер группы квазиортогональных кодов представляет выбранную ei(t). Способ поддержки переменной скорости передачи данных в группе квазиортогональных кодов состоит в использовании в качестве группы кодов Уолша номера выделенного ортогонального кода, а затем добавлении выделенных ei(t) с интервалами длиной N. Фиг. 7 иллюстрирует случай расширения каналов путем использования кодов Уолша и квазиортогональных кодов в прямой линии связи IS-95/IS-95A согласно возможному варианту осуществления настоящего изобретения. В частности, коды Уолша представлены как Wi (где i= 0. . . 63), а каналы разделяются с помощью соответствующих выделенных ортогональных кодов. Квазиортогональные коды представлены как Si (где i = 0 - 191), которые присваиваются каналам трафика. Как показано на фиг. 7, в прямой линии связи IS-95/IS-95A можно выполнить разделение каналов для 64 абонентов путем использования кодов Уолша и дополнительно еще для 192 абонентов путем использования квазиортогональных кодов. Соответственно, очевидно, что при использовании кодов Уолша вместе с квазиортогональными кодами количество каналов можно увеличить втрое. На фиг. 8 показана блок-схема системы мобильной связи с расширителем, использующим коды Уолша и квазиортогональные коды, согласно возможному варианту настоящего изобретения. В системе мобильной связи по фиг. 8 канальные передатчики включают канал пилот-сигнала, канал управления и канал трафика. Канальные сигналы разделяются независимо путем использования кодов Уолша и квазиортогональных кодов. Согласно фиг. 8 первый преобразователь сигнала (преобразователь данных из одной формы в другую) 811 преобразует входные потоки бит данных канала пилот-сигнала и канала управления. В частности, первый преобразователь сигнала 811 преобразует 0 входного потока битов в сигнал +1, а 1 входного потока битов - в сигнал -1, и затем выдает преобразованные сигналы в блок расширения ортогональными кодами и ПШ (псевдошумового) маскирования 819. Второй преобразователь сигнала 813 преобразует входной поток битов данных канала трафика. В частности, второй преобразователь сигнала 813 преобразует 0 входного потока битов в сигнал +1, а 1 входного потока бит в сигнал -1, и затем выдает преобразованные сигналы в блок расширения ортогональными кодами и ПШ маскирования 819. Здесь при использовании в устройстве связи модуляции типа квадратурной фазовой манипуляции (КФМн) первый и второй преобразователи сигналов 811 и 813 демультиплексируют соответственно нечетные и четные данные. Генератор кодов Уолша 814 формирует коды Уолша Wi в соответствии с кодовыми индексами соответствующих каналов и выводит сформированные коды Уолша Wi в блок расширения ортогональными кодами и ПШ маскирования 819. Генератор квазиортогональных кодов 815, имеющий квазиортогональные коды, выбирает квазиортогональные коды Si, соответствующие кодовому индексу соответствующего канала и подает выбранные квазиортогональные коды в блок расширения ортогональными кодами и ПШ маскирования 819. С другой стороны, генератор квазиортогональных кодов 815 формирует маску квазиортогонального кода, генерирует квазиортогональные коды путем добавления маски к соответствующим кодам Уолша и подает сформированные квазиортогональные коды в блок расширения ортогональными кодами и ПШ маскирования 819. Генератор ПШ кодов 817 формирует действительный ПШ код PNi и мнимый ПШ код PNq и подает сформированные ПШ коды в блок расширения ортогональными кодами и ПШ маскирования 819. Блок расширения ортогональными кодами и ПШ маскирования 819 расширяет сигналы, выходящие из первого и второго преобразователей сигналов 811 и 813, путем умножения выходных сигналов на коды Уолша Wi и квазиортогональные коды Si, и затем ПШ маскирования расширенных сигналов путем умножения расширенных сигналов на действительный и мнимый ПШ коды PNi и PNq, формируя в результате выходные сигналы Xi и Xq. Фильтр группового спектра 821 осуществляет фильтрацию расширенных сигналов Xi и Xq полосы частот модулирующих сигналов с выхода блока расширения ортогональными кодами и ПШ маскирования 819. Преобразователь частоты 823 преобразует сигналы с выхода полосового фильтра 821 в радиочастотный (РЧ) сигнал. Предположим, что канал пилот-сигнала, канал управления (которые являются опорными каналами) и канал трафика заняты одним пользовательским терминалом по фиг. 8 для получения выигрыша обработки за счет синхронной демодуляции. В этой ситуации пользовательский терминал передает биты данных 1 или 0 по каналу трафика и передает опорные данные 1 или 0 для синхронной демодуляции канала трафика по каналу пилот-сигнала и каналу управления. Биты данных 1 и 0 в канале пилот-сигнала в канале управления и канале трафика преобразуются соответственно в сигналы -1 и +1 первым и вторым преобразователями сигналов 811 и 813 и подаются в блок расширения ортогональными кодами и ПШ маскирования 819. Затем блок расширения ортогональными кодами и ПШ маскирования 819 формирует комплексный расширенный сигнал в полосе частот модулирующих сигналов путем умножения входных сигналов на соответствующие коды Уолша или квазиортогональные коды, умножает ортогонально расширенные сигналы на ПШ коды и выдает сформированные комплексные сигналы в полосовой фильтр 821. Комплексный расширенный сигнал содержит действительную составляющую Xi и мнимую составляющую Xq. Затем полосовой фильтр 821 модулирует и фильтрует комплексный сигнал посредством модуляции типа квадратурной фазовой манипуляции со сдвигом (КФМС), а преобразователь частоты 823 преобразует выходной сигнал полосового фильтра 821 в расширенный РЧ сигнал. Блок расширения ортогональными кодами и ПШ маскирования 819 представляет собой блок расширения, обеспечивающий повышение корреляционных свойств в условиях многолучевого распространения сигналов, причем он может быть реализован с различной структурой. На фиг. 9 показан возможный вариант структуры блока расширения ортогональными кодами и ПШ маскирования 819, в котором используются квазиортогональные коды Si для канала пилот-сигнала и канала управления и коды Уолша Wi для канала трафика, а также комплексное ПШ маскирование. Первый расширитель 911 умножает сигналы канала пилот-сигнала и канала управления на квазиортогональные коды Si и выдает ортогонально расширенный сигнал dl. Второй расширитель 913 умножает сигнал канала трафика на коды Уолша Wi и выдает ортогонально расширенный сигнал d2. Повторитель 917 повторяет ПШ коды PNi и PNq с выхода генератора ПШ кодов 817 заранее определенное количество раз. Комплексный умножитель 919 умножает расширенные сигналы d1 и d2 с выхода первого и второго расширителей 911 и 913 соответственно, на ПШ коды PNi и PNq, с выхода повторителя 917, и формирует ПШ маскированные сигналы Xi и Xq (Xi= dl


Формула изобретения

где Si(t) представляет квазиортогональные коды;
Wi(t) представляет коды Уолша;
N равно длине кодов Уолша;
М - переменная, зависящая от изменения скорости передачи данных;


и минимальное значение полной корреляции с другими квазиортогональными кодами удовлетворяет третьему условию, представленному в виде

где Si(t) представляет квазиортогональные коды;
Wi(t) представляет коды Уолша;
N равно длине кодов Уолша;
М - переменная, зависящая от изменения скорости передачи данных;

S'i(t) представляет другие квазиортогональные коды. 6. Устройство по п. 1, отличающееся тем, что при изменении скорости передачи сигнала канала трафика используется определенная часть квазиортогонального кода. 7. Способ канальной передачи для системы мобильной связи МДКР, включающий этапы расширения сигнала канала трафика с помощью квазиортогонального кода, расширения пилот-сигнала с помощью кода Уолша, приема расширенного сигнала канала трафика и расширенного пилот-сигнала и комплексного умножения расширенного сигнала канала трафика и расширенного пилот-сигнала на псевдошумовые последовательности, фильтрации выходного сигнала комплексного умножителя и преобразования частоты отфильтрованного сигнала на радиочастоту. 8. Способ по п. 7, отличающийся тем, что упомянутый квазиортогональный код характеризуется тем, что значение частной корреляции с упомянутым кодом Уолша не превышает минимального предельного значения частной корреляции. 9. Способ по п. 8, отличающийся тем, что минимальное предельное значение частной корреляции удовлетворяет первому условию, представленному в виде

где Si(t) представляет квазиортогональные коды;
Wi(t) представляет коды Уолша;
N равно длине кодов Уолша;
М - переменная, зависящая от изменения скорости передачи данных;


и минимальное значение полной корреляции с другими квазиортогональными кодами удовлетворяет третьему условию, представленному в виде

где Si(t) представляет квазиортогональные коды;
Wi(t) представляет коды Уолша;
N равно длине кодов Уолша;
М - переменная, зависящая от изменения скорости передачи данных;

S'i(t) представляет другие квазиортогональные коды. 12. Способ по п. 7, отличающийся тем, что при изменении скорости передачи сигнала канала трафика используется определенная часть квазиортогонального кода. 13. Способ формирования квазиортогональных кодов длиной 22m в системе мобильной связи, использующей коды Уолша и m-последовательность, основанный на формировании m-последовательности, отличающийся тем, что формирование m-последовательности осуществляют с длиной 22m и выбирают субпоследовательности, имеющие период 2m-1, путем выбора элементов с интервалами 2m+1, формируют ненулевые субпоследовательности из выбранных субпоследовательностей, формируют 2m-1 последовательностей путем соединения субпоследовательностей и осуществляют перестановку столбцов сформированных последовательностей с помощью функции перестановки столбцов, добавляют коды Уолша к последовательностям с переставленными столбцами для формирования квазиортогональных последовательностей-кандидатов, имеющих значение полной корреляции между кодами Уолша и другими квазиортогональными кодами, которое меньше, чем минимальное предельное значение полной корреляции, и выбирают из квазиортогональных последовательностей - кандидатов квазиортогональные коды, имеющие значение частной корреляции с кодами Уолша, удовлетворяющее значению минимальной частной корреляции при переменной скорости передачи. 14. Способ по п. 13, отличающийся тем, что дополнительно осуществляют двукратное повторение квазиортогональных кодов для формирования квазиортогональных кодов длиной 22m+1. 15. Способ формирования квазиортогональных кодов длиной N в системе мобильной связи, использующей коды Уолша и квазиортогональные коды, при котором формируют квазиортогональные коды, соответствующие ряду условий, причем первое условие состоит в том, что полная корреляция между k-м кодом Уолша Wk(t), где l










второе условие состоит в том, что полная корреляция между i-й строкой и i-й строкой квазиортогональных кодов не превышает


третье условие состоит в том, что при использовании квазиортогональных кодов длиной N и кодов Уолша длиной N/M частная корреляция между соответствующими кодами длиной N/M не превышает


где l= 0,1,2, . . . , М-1;
Wk(t) представляет k-й ортогональный код длиной N, где l


Si(t) представляет квазиортогональный код длиной N, где l


РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15