Двухполосная антенна
Изобретение относится к антеннам и используется в мобильных системах связи. Техническим результатом является создание двухполосной антенны, в которой не требуется наличия специальной согласующей схемы между источником сигнала и антенной. Двухполосная антенна для мобильной системы связи включает в себя металлическую трубку, имеющую открытый конец; коаксиальную линию передачи, имеющую внутренние и внешние проводники, с одной частью коаксиальной линии, вставленной в металлическую трубку, плоскость основания, подсоединенную к части металлической трубки напротив открытого конца и к внешнему проводнику коаксиальной линии передачи, и сигнальную линию, подсоединенную к внутреннему проводнику и выступающую из металлической трубки на ее открытом конце. Предпочтительно размеры металлической трубки, коаксиальной линии передачи и сигнальной линии выбираются таким образом, чтобы импеданс антенны соответствовал импедансу коаксиальной линии передачи на протяжении двойной рабочей полосы частот, тем самым устраняя необходимость наличия специальной согласующей схемы. 2 с. и 14 з. п. ф-лы, 11 ил.
Область изобретения 1. Изобретение относится к антенне и, более конкретно, к двухполосной антенне, в которой не требуется существования специальной согласующей схемы между источником сигнала и антенной, тем самым она имеет простую конструкцию, удобное использование, низкую стоимость и улучшенное исполнение.
2. Описание предшествующего уровня техники В мобильной системе связи антенна служит для сохранения передаваемой мощности и эффективного использования частоты. При быстром развитии и широком распространении использования мобильной связи, существуют частые явления насыщения возможностей в традиционной системе. Таким образом, существует необходимость создания новой системы, которая хорошо работает в таком окружении, и блокировочного устройства между традиционной системой и новой системой. Например, блокировочные устройства используются между: (I) системой многостанционного доступа с кодовым разделением каналов (CDMA) и персональной системой связи (PCS) в Корее; (II) системой перспективной службы радиотелефонной связи с подвижными объектами (AMPS) и персональной системой связи (PCS) в США; (III) групповой специальной мобильной системой (GSM) и цифровой европейской беспроволочной телефонной системой (DECT); или (IV) групповой специальной мобильной системой (GSM) и цифровой системой связи (DCS) 1800, применяющей GSM к полосе частот 1800 МГц в Европе. Такие системы блокировки обычно называются двухполосными системами, т. е. двухполосная система блокирует две различные системы, имеющие полосы частот, отличные друг от друга. В традиционных двухполосных системах, имеющих различные антенны для соответствующих двух полос частот, существует удвоение в стоимости материала, что делает затруднительным их миниатюризацию и снижение веса. Следовательно, была разработана двухполосная антенна, используемая на двух полосах частот. Патент США N 4509056 описывает многочастотную антенну, использующую настроенные дроссели коаксиального экрана. Фиг. 1 представляет собой сечение, иллюстрирующее конструкцию однополюсной антенны, действующей на двойной частоте, в соответствии с вариантом реализации многочастотной антенны, использующей настроенные дроссели коаксиального экрана. Как показано на фиг. 1, внешний проводник 6 коаксиальной линии передачи 2 подсоединяется к плоскости основания 20, и удлинитель 10 внутреннего проводника 8 тянется от плоскости основания 20, проходящей через дроссель 12i к секции, связанной с излучением, размер которой обозначен через N. Дроссель загружается твердой диэлектрической вставкой 16i, и внутренняя поверхность корпуса дросселя и внешняя поверхность проводника, проходящего через дроссель, формируют четвертьволновую линию передачи (

фиг. 5 представляет собой чертеж, иллюстрирующий эквивалентную схему фиг. 2, упрощенную дважды;
фиг. 6 представляет собой чертеж, иллюстрирующий эквивалентную схему, упрощенную трижды за счет комбинирования импеданса Z** и импеданса ZCD для формирования импеданса ZEF, рассматриваемого из точек Е и F;
фиг. 7 представляет собой чертеж, иллюстрирующий эквивалентную схему, в которой диэлектрические проницаемости d1, d2, 11, 12 и 13 имеют заданные значения, осуществляя двухполосную антенну в соответствии с вариантом реализации изобретения;
фиг. 8 представляет собой чертеж, иллюстрирующий диаграмму направленности антенны, измеряемую при сравнении диаграммы стандартной дипольной антенны и двухполосной антенны в соответствии с вариантом реализации настоящего изобретения;
фиг. 9 представляет собой чертеж, иллюстрирующий импедансную характеристику двухполосной антенны в соответствии с вариантом реализации настоящего изобретения;
фиг. 10 представляет собой чертеж, иллюстрирующий коэффициент стоячей волны (SWR) (KCB) в соответствии с вариантом реализации настоящего изобретения; и
фиг. 11 иллюстрирует другой вариант реализации настоящего изобретения. Подробное описание предпочтительного варианта реализации изобретения
Здесь далее будет подробно описан предпочтительный вариант реализации настоящего изобретения со ссылкой на сопровождающие чертежи. На всех чертежах одни и те же числовые или буквенные обозначения будут использоваться для обозначения похожих или эквивалентных элементов, имеющих одну и ту же функцию. Кроме того, в следующем описании номера конкретных деталей, таких, как предпочтительные компоненты, составляющие схему, устанавливаются так, чтобы обеспечить более глубокое понимание настоящего изобретения. Однако, для квалифицированного специалиста будет очевидно, что настоящее изобретение может быть реализовано на практике без этих конкретных деталей. В детальном описании настоящего изобретения будем избегать известной функции и конструкции, без необходимости делающей неясным предмет настоящего изобретения. Фиг. 2 представляет сечение, иллюстрирующее конструкцию двухполосной антенны в соответствии с вариантом реализации настоящего изобретения, она состоит из коаксиальной линии передачи 30, дросселя 60, содержащего металлическую трубку 40 и диэлектрический материал 80, сигнальной линии 15 и пластины основания 50. Здесь обозначения A и B используются только для понимания отношения между фиг. 2 и связанными чертежами, показывающими эквивалентные схемы. Предпочтительно один конец металлической трубки 40 подсоединяется к пластине основания 50, и другой ее конец является открытым. Физическая длина металлической трубки 40 составляет приблизительно одну четверть длины волны (11 + 12) на центральной частоте полосы высоких частот. Коаксиальная линия передачи 30 составлена из внутреннего проводника 70 и внешнего проводника 25, где одна ее часть вставляется в металлическую трубку 40. Внешний проводник 25 коаксиальной линии передачи 30 подсоединяется к плоскости основания 50. Описанная выше часть коаксиальной линии передачи 30, вставленная в металлическую трубку, тянется от плоскости основания 50 к открытому концу металлической трубки 40 на длину, обозначенную как 11. Внутренний проводник 70 подсоединяется (в точке К) к сигнальной линии 15, имеющей тот же диаметр d3, что и диаметр d1 внешнего проводника 25 коаксиальной линии передачи 30 на конце коаксиальной линии передачи 30, вставленной в металлическую трубку 40. В точке K внешний проводник 25 коаксиальной линии 30 является открытым, создавая таким образом высокочастотный (RF) ВЧ дроссель (т. е. коаксиальная линия 30 заканчивается в точке К). Противоположный конец коаксиальной линии можно присоединять к электронным устройствам (не показано), используемым в соединении с антенной, таким, как передатчик и/или приемник. Сигнальная линия 15 проходит через открытый конец металлической трубки 40, но выступает за открытым концом металлической трубки 40. Металлическая трубка 40 имеет диаметр d2 и наполняется диэлектрическим материалом 80. Так как диэлектрический материал имеет диэлектрическую проницаемость выше, чем диэлектрическая проницаемость воздуха, это дает возможность иметь более короткую длину металлической трубки 40 для данной электрической длины (по сравнению с металлической трубкой, наполненной воздухом). Открытый конец металлической трубки 40 создает второй высокочастотный (RF) Вч дроссель. Фиг. 3 представляет собой чертеж, иллюстрирующий эквивалентную схему двухполосной антенны, показанной на фиг. 2. Действие эквивалентной схемы двухполосной антенны будет описано здесь ниже. ZAB представляет импеданс дросселя 60, который содержит металлическую трубку 40, ширина которой определяется между точками от A до B, коаксиальную линию передачи 30 и диэлектрический материал 80, наполняющий металлическую трубку 40. ZAB представляется уравнением (2), так как теоретически импеданс действует как короткая линия.




Исключая коэффициент затухания


где

K - постоянная распространения,
Z0 - характеристический импеданс короткой линии,
11 - длина от плоскости основания до открытого конца коаксиальной линии передачи,
d1 - внешний диаметр внешнего проводника коаксиальной линии передачи,
d2 - внутренний диаметр металлической трубки,



Фиг. 4 представляет собой чертеж, иллюстрирующий эквивалентную схему, упрощенную один раз за счет комбинирования источника сигнала и импеданса ZAB. Импеданс Z* представляется уравнением (5):

Фиг. 5 представляет собой чертеж, иллюстрирующий эквивалентную схему, упрощенную дважды с упрощенной эквивалентной схемой, показанной на фиг. 4. Со ссылкой на фиг. 2, так как длина 12 от верхнего конца коаксиальной линии передачи 30 до открытого конца металлической трубки 40 подобрана таким образом и действует как одна часть сигнальной линии 15 и металлической трубки 40, если она комбинируется с импедансом Z*, может быть получена эквивалентная схема, как показано на фиг. 4. В соответствии с эквивалентной схемой фиг. 4 может быть получен импеданс Z**, как показано в уравнении (6)

Фиг. 6 представляет собой чертеж, иллюстрирующий импеданс ZEF рассматриваемый из точек Е и F в эквивалентной схеме, в которой комбинируются импеданс Z** и импеданс ZCD. Импеданс ZEF может быть получен, как показано с помощью уравнения (7): -

Соответственно импеданс ZEF вычисляется при изменении переменных, таких, как частота, диэлектрическая проницаемость, d1, d2, 11, 12 и 13. Фиг. 7 представляет собой чертеж, иллюстрирующий эквивалентную схему, в которой диэлектрическая проницаемость d1, d2, 11, 12 и 13 имеет заданные значения, реализуя двухполосную антенну в соответствии с вариантом реализации настоящего изобретения. Так как импеданс ZEF источника сигнала изменяется с изменением рабочей частоты, он будет обозначен как ZEF(f). На фиг. 6 показан импеданс ZEF(f), имеющий антенну в качестве нагрузки. Так как импеданс антенны ZANT также изменяется с изменением частоты, он будет обозначен как ZANT(f). Соответственно импеданс источника сигнала ZEF(f), имеющий интегральную изменяемую согласующую схему, таким образом равен импедансу антенны ZANT(f). Следовательно, в этом варианте реализации настоящего изобретения коэффициенты диэлектрических переменных d1, d2, 11, 12 и 13 изменяются при подборе импеданса ZEF(f) таким образом, что импеданс ZEF(f) и импеданс ZANT(f) могут быть реализованы так, чтобы они были равны друг другу. Таким образом, условие согласования между источником сигнала и антенной может быть достигнуто точно, и могут быть улучшены характеристики двухполосной антенны. Фиг. 8 представляет собой чертеж, иллюстрирующий диаграмму направленности антенны, измеряемую в сравнении диаграммы направленности стандартной дипольной антенны и двухполосной антенны в соответствии с вариантом реализации настоящего изобретения. Фиг. 9 представляет собой чертеж, иллюстрирующий импедансную характеристику двухполосной антенны в соответствии с вариантом реализации настоящего изобретения, и фиг. 10 представляет собой чертеж, иллюстрирующий коэффициент стоячей волны (SWR) (KCB) в соответствии с вариантом реализации настоящего изобретения. В настоящее время частота двухполосной антенны системы многостанционного доступа с кодовым разделением каналов (CDMA) (KPK) и персональной системы связи (PCS) (ПСС) в Корее является следующей: частота системы многостанционного доступа с кодовым разделением каналов (КРК) составляет 824-849 МГц при передаче и 869-894 МГц при приеме; частота персональной системы связи в Корее составляет 1750-1780 МГц при передаче и 1840-1870 МГц при приеме. Так как двухполосная антенна может применяться к системам GSM/DECT, GSM/DCS 1800, AMPS и CDMA/PCS, она может быть легко выполнена при изменении первой длины 11 и второй длины 12 дросселя 60, разделенного в точке (точка K), в которой внутренний проводник 70 коаксиальной линии передачи 30 и сигнальная линия 15 подсоединяются друг к другу, как показано на фиг. 2. Если длина 11+12 дросселя 60 изменяется, резонансная точка полосы высоких частот сдвигается, однако, как отмечено на фиг. 10 с помощью пунктирной линии 81, резонансная точка полосы низких частот сдвигается чуть-чуть, как показано на фиг. 10. Со ссылкой на сплошную жирную линию, отмеченную на фиг. 9, интервал


Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11