Способ получения спеченного тела кристалла термоэлектрического элемента (варианты)
Использование: в технологии производства термоэлектрических элементов. Сущность изобретения: берется блок материала для термоэлектрического элемента. В зависимости от направления, по которому подается электрический ток в этом блоке, меняются термоэлектрические свойства термоэлектрического элемента. Блок помещается в удлиненную ампулу так, что направление пропускания электрического тока через блок совпадает с продольной осью ампулы. После дегазации ампулы выполняется деформационная обработка, целью которой является уменьшение размеров поперечного сечения для получения пластически деформированной ампулы. В процессе деформационной обработки неспеченная прессовка блока внутри ампулы измельчается. Затем выполняется термообработка, в результате которой в пластически деформированной ампуле неспеченная прессовка спекается. Из пластически деформированной ампулы извлекается спеченное тело кристалла. Технический результат: повышение термоэлектрических свойств и механической прочности. 3 с. и 9 з.п. ф-лы, 3 табл., 19 ил.
Изобретение относится к способу получения спеченного тела кристалла термоэлектрического элемента, который используется для получения термоэлектрических элементов термоэлектрического модуля, применяемого в качестве устройства регулирования температуры с использованием явления Пельтье.
Как показано на фиг. 12А и 12В, традиционный термоэлектрический модуль 100 включает структуру из полупроводниковых элементов 110, 120 типа N и типа P в качестве термоэлектрических элементов, которые составляют матрицу, при этом каждый из полупроводниковых элементов 110 типа N устанавливается с определенным зазором по соседству с полупроводниковым элементом 120 типа P; верхние электроды 130, устроенные на верхней поверхности структуры для обеспечения соединения между смежными полупроводниковыми элементами 110 и 120 в соответствии с первой фигурой схемы; нижние электроды 140, устроенные на нижней поверхности структуры для обеспечения соединения между смежными полупроводниковыми элементами 110 и 120 в соответствии со второй фигурой схемы, отличной от первой фигуры схемы; и пластины спеченного алюминия в качестве керамических пластин 150, соединенные с верхними и нижними электродами 130 и 140. Например, как показано на фиг. 12В, когда на термоэлектрический модуль 100 подается постоянный ток, то по каждому из верхних электродов 130 из полупроводникового элемента 110 типа N в полупроводниковый элемент 120 типа P проходит электрический ток, так же как и по каждому из нижних электродов 140 из полупроводникового элемента 120 типа P в полупроводниковый элемент 110 типа N тоже проходит электрический ток. Одновременно верхние электроды 130 через керамическую пластину 150 поглощают тепло из окружающей среды, а нижние электроды 140 через керамическую пластину 150 излучают тепло в окружающую среду. Поэтому термоэлектрический модуль 100 работает как своего рода тепловой насос для перекачки тепла с одной своей стороны на другую, что известно как явление Пельтье. В соответствии с этим принципом можно использовать термоэлектрический модуль 100 в качестве устройства регулирования температуры электронных деталей или печатных плат. Термоэлектрические элементы 110, 120 могут быть получены в соответствии со следующим способом, описанным в раннее поданой публикации японского патента [KOKAI] N 9-321357. Как показано на фиг. 13, этот кристалл термоэлектрического элемента измельчается в порошок в шаровой мельнице в неокислительной атмосфере. Для получения заготовки для экструзии после засыпки порошка в ампулу, выполненную из металла типа алюминия, ампула дегазируется. Затем, как показано на фиг. 14, для уменьшения диаметра заготовки 72 выполняется экструзия с использованием экструзионной головки 70. На фиг. 14 цифра 76 обозначает порошок материала термоэлектрического элемента, засыпанный в ампулу 74. Затем выполняется термообработка и порошок спекается в пластически деформированной заготовке. При извлечении из ампулы спеченного тела получается тонкий стержень спеченного тела из материала термоэлектрического элемента. В описанном выше способе ввиду того, что кристалл предварительно измельчается в шаровой мельнице, можно уменьшить сегрегацию легирующих элементов в кристалле, т. е. неравномерность распределения легирующих элементов в кристалле. В результате этого уменьшается разброс термоэлектрических и механических свойств термоэлектрических элементов. Кроме того, по сравнению со случаем получения термоэлектрических элементов путем их непосредственной вырезки из кристалла, можно значительно уменьшить образование трещин или сколов в термоэлектрических элементах. Более того, вместе с повышением механической прочности термоэлектрических элементов в результате термообработки повышается и текучесть материала термоэлектрических элементов. Между прочим, характеристики термоэлектрического модуля 100 как теплового насоса в значительной степени зависят от термоэлектрических характеристик термоэлектрических элементов 110, 120. Термоэлектрические характеристики могут быть улучшены путем обеспечения равномерного распределения легирующих элементов в кристалле путем уменьшения количества примесей, захваченных термоэлектрическим элементом, и/или путем повышения степени ориентации определенной кристаллографической плоскости материала термоэлектрических элементов. В описанном выше способе, ввиду измельчения кристалла в шаровой мельнице, можно получить равномерное распределение легирующих элементов. Однако вместе с тем в полученном порошке материала термоэлектрического элемента возрастает и количество примесей. Поэтому существует предел улучшения термоэлектрических характеристик. С другой стороны, термоэлектрические характеристики могут быть значительно улучшены, если возрастает степень ориентации определенной кристаллографической плоскости, материала термоэлектрического элемента, которая называется кристаллографичеcкой плоскостью "С". Это значит, что если на термоэлектрический элемент вдоль кристаллографической плоскости подается постоянный ток, то термоэлектрические характеристики улучшаются. В приведенном выше способе, ввиду измельчения кристалла в шаровой мельнице, кристаллографическая плоскость "С" в полученном порошке материала термоэлектрического элемента ориентирована случайным образом. И хотя ориентация кристаллографической плоскости "С" может быть улучшена до некоторой степени путем экструзии ампулы с порошком, этого недостаточно, чтобы получить отличные термоэлектрические характеристики. Основной целью настоящего изобретения является разработка способа получения спеченного тела кристалла термоэлектрического элемента с отличными термоэлектрическими свойствами и высокой механической прочностью для изготовления термоэлектрического модуля, который применяется в качестве устройства регулирования температуры с использованием явления Пельтье. Ниже описан способ получения спеченного тела кристалла. Берется блок материала для термоэлектрического элемента. В зависимости от направления, по которому подается электрический ток в этом блоке, меняются термоэлектрические свойства термоэлектрического элемента. Блок помещается в удлиненную ампулу так, что направление пропускания электрического тока через блок совпадает с продольной осью ампулы. После дегазации ампулы выполняется деформационная обработка, целью которой является уменьшение размеров поперечного сечения для получения пластически деформированной ампулы, в процессе деформационной обработки неспеченная прессовка блока внутри ампулы дробится. Затем выполняется термообработка, в результате которой в пластически деформированной ампуле неспеченная прессовка спекается. Наконец, из пластически деформированной ампулы извлекается спеченное тело кристалла. Предпочтительно, чтобы в описанном выше способе по настоящему изобретению ампула изготавливалась из металла с коэффициентом линейного расширения более низким, чем у материала термоэлектрического элемента в диапазоне температур термообработки. В этом случае термообработка может выполняться более эффективно, что подробно объясняется ниже. Предпочтительно, чтобы в описанном выше способе по настоящему изобретению деформационная обработка выполнялась в несколько этапов, что обеспечивает получение пластически деформированной ампулы требуемого сечения. В этом случае отжиг предпочтительно выполнять в процессе деформационной обработки. Отжиг без разрушения ампулы применяется для безопасного завершения операции деформационной обработки. Другой целью настоящего изобретения является разработка способа получения спеченного тела кристалла для термоэлектрического элемента с отличными термоэлектрическими свойствами и высокой механической прочностью для изготовления термоэлектрического модуля, характеристики которого как теплового насоса улучшены. Спеченное тело кристалла получается при использовании следующего способа. Берется кристалл термоэлектрического элемента, выращенный способом направленной кристаллизации. Этот кристалл помещается в удлиненную ампулу таким образом, что направление кристаллизации этого выращенного кристалла совпадает с продольной осью ампулы. После дегазации ампулы выполняется деформационная обработка, целью которой является уменьшение размеров поперечного сечения для получения пластически деформированной ампулы, в процессе деформационной обработки внутри ампулы неспеченная прессовка кристалла дробится. Затем выполняется термообработка, в результате которой в пластически деформированной ампуле неспеченная прессовка спекается. Наконец, из пластически деформированной ампулы извлекается спеченное тело кристалла. В другом случае спеченное тело кристалла может быть получено с помощью следующего способа. Сначала получают спеченное тело кристалла с ориентацией определенной кристаллографической плоскости материала термоэлектрического элемента в осевом направлении. В предпочтительном варианте изобретения сначала спеченное тело кристалла термоэлектрического элемента выращивается с помощью направленной кристаллизации, измельчается с получением порошка, и этот порошок предварительно прессуется в неокислительной атмосфере. Затем тело предварительно спеченного кристалла помещается в удлиненную ампулу таким образом, что прессование тела предварительно спеченного кристалла совпадает по направлению с продольной осью ампулы. После дегазации ампулы выполняется многоэтапная операция деформационной обработки, целью которой является уменьшение размеров поперечного сечения для получения пластически деформированной ампулы. В процессе деформационной обработки неспеченная прессовка тела предварительно спеченного кристалла измельчается внутри ампулы. Затем выполняется термообработка, в результате которой в пластически деформированной ампуле неспеченная прессовка спекается. Наконец, из пластически деформированной ампулы удаляется спеченное тело кристалла. Другие особенности настоящего изобретения и преимущества от его применения будут понятны из описания предпочтительных вариантов настоящего изобретения, проиллюстрированных с помощью следующих чертежей. На фиг. 1 показана маршрутная карта получения спеченного тела кристалла термоэлектрического элемента в соответствии с первым вариантом способа осуществления настоящего изобретения. На фиг. 2 показан перспективный вид этапа помещения выращенного кристалла в ампулу в соответствии со способом по настоящему изобретению. На фиг. 3 показано сечение по выращенному кристаллу, помещенному в ампулу. На фиг. 4А показан перспективный вид на цилиндрическую сборку, состоящую из единичного выращенного кристалла и дистанционирующих элементов. На фиг. 4В показан перспективный вид на цилиндрическую сборку, состоящую из нескольких выращенных кристаллов и дистанционирующих элементов. На фиг. 5 схематично изображен волочильный станок. На фиг. 6А и 6В показан перспективный вид и вид спереди на пару валков для прокатки. На фиг. 7А и 7В показан перспективный вид и вид спереди на ротационно-обжимную машину. На фиг. 8 показана схема с результатами первого эксперимента, описанного в первом примере осуществления способа по настоящему изобретению. На фиг. 9 показана схема с результатами второго эксперимента, описанного в первом примере осуществления способа по настоящему изобретению. На фиг. 10 изображена зависимость эффективности работы термоэлектрического элемента от температуры термообработки. На фиг. 11А изображена маршрутная карта процесса подготовки таблеток из материала термоэлектрического элемента в соответствии с примером осуществления способа по настоящему изобретению. На фиг. 11В показан перспективный вид этапа помещения таблеток в ампулу в соответствии со способом по настоящему изобретению. На фиг. 12А и 12В показаны перспективный вид на традиционный термоэлектрический модуль и сечение по нему. На фиг. 13 показана маршрутная карта традиционного способа получения спеченного тела кристалла термоэлектрического элемента. На фиг. 14 показана схема этапа экструзии в соответствии с традиционной технологией получения тела кристалла. Ниже подробно со ссылками на прилагаемые чертежи приводится объяснение предпочтительных вариантов осуществления способа по настоящему изобретению. Первый вариант осуществления способа по настоящему изобретению Спеченное тело кристалла термоэлектрического элемента может быть получено с помощью следующего способа, соответствующего первому варианту осуществления способа по настоящему изобретению, как показано на маршрутной карте, изображенной на фиг. 1. ЭТАП 10 На этапе 10 получают кристалл 1 из материала термоэлектрического элемента, выращенный с помощью направленной кристаллизации. В качестве материала для термоэлектрического элемента может использоваться, например, Bi2Te3 (для термоэлектрического элемента типа N) или Sb2Te3 (для термоэлектрического элемента типа P). Направленная кристаллизация известна как способ кристаллизации кристаллического материала в контролируемых условиях, обеспечивающих ориентацию определенной кристаллографической плоскости в направлении кристаллизации. В качестве материала для термоэлектрического элемента используется хрупкий состав; так называемая кристаллографическая плоскость "С" является плоскостью спайности. Кристалл 1, применяемый в данном варианте способа по настоящему изобретению, характеризуется тем, что кристаллографическая плоскость "С" ориентирована в направлении кристаллизации, которое совпадает с продольной осью кристалла. Как описано выше, характеристики термоэлектрического модуля как теплового насоса в значительной степени зависят от термоэлектрических характеристик применяемых термоэлектрических элементов. Уровень термоэлектрических характеристик меняется в соответствии с направлением прохождения электрического тока через термоэлектрический элемент. Термоэлектрические характеристики высокого уровня получаются, когда направление прохождения электрического тока в термоэлектрическом элементе совпадает с направлением кристаллографической плоскости "С". Поэтому чем выше степень ориентации кристаллографической плоскости "С" в термоэлектрическом элементе, тем выше уровень термоэлектрических характеристик. Кристалл 1, применяемый в данном варианте осуществления способа по настоящему изобретению, выращивается путем направленной кристаллизации, при этом кристаллографическая плоскость "С" (плоскость спайности) материала термоэлектрического элемента ориентирована по продольной оси кристалла 1, т.е. в направлении кристаллизации кристалла. Это значит, что электричество для получения отличных термоэлектрических характеристик термоэлектрического элемента подается в направлении прохождения электрического тока в кристалле 1. В этом варианте осуществления способа по настоящему изобретению может применяться продаваемый на рынке кристалл, изготовленный с помощью направленной кристаллизации. ЭТАП 11 На этапе 11 выращенный кристалл 1 помещается в удлиненную ампулу 2 таким образом, что направление его кристаллизации совпадает с продольной осью ампулы, как показано на фиг. 2. Что касается ампулы 2, то по предпочтительному варианту изобретения ампула изготавливается металлической из таких материалов, как алюминий, железо или сталь. Если кристалл 1 имеет круглую форму, то по предпочтительному варианту изобретения ампула 2 должна быть такой формы, чтобы кристалл умещался в ней. Другими словами по предпочтительному варианту изобретения форма ампулы должна быть такой, чтобы диаметр кристалла 1 был чуть меньше внутреннего диаметра ампулы 2. Например, как показано на фиг. 3, если диаметр D1 кристалла 1 составляет 7 мм с допуском 0,000 мм, -0,012 мм, то по предпочтительному варианту изобретения внутренний диаметр D2 ампулы 2 составляет 7 мм с допуском +0,012 мм, 0,000 мм. С другой стороны, как показано на фиг. 4А, при использовании кристалла 1А прямоугольной формы по предпочтительному варианту изобретения скорма ампулы 2 выбирается таким образом, чтобы большая цилиндрическая сборка, состоящая из нескольких прямоугольных кристаллов 1А и четырех дистанционирующих элементов 5А, свободно входила в ампулу, как показано на фиг. 4В. С использованием этого способа получают спеченное тело кристалла большого диаметра из материала термоэлектрического элемента. По предпочтительному варианту изобретения дистанционирующие элементы 5, 5А выполняются из того же материала, что и ампула 2. Таким образом, одной из особенностей настоящего изобретения является помещение кристалла 1, 1А из материала термоэлектрического элемента в ампулу 2 без измельчения кристалла. ЭТАП 12 После закрытия ампулы 2 крышкой 3 осуществляется дегазация ампулы с целью получения заготовки 4 для выполнения деформационной обработки, описанной выше. ЭТАП 13 Затем выполняется деформационная обработка заготовки 3 с целью уменьшения ее поперечного сечения. В качестве деформационной обработки выбирается волочение, прокатка или обжим. Например, может выполнятся волочение с использованием волочильного станка, как показано на фиг. 5. Волочильный станок снабжен волочильной доской 20, кареткой 21 с зажимным патроном 22 для захвата заготовки 4, цепью 23 для вытягивания каретки и крюком 24, который применяется для соединения каретки с цепью. Цепь 23 приводится звездочкой 25, соединенной с электромотором (не показан) через понижающий редуктор (не показан). При ступенчатом выполнении операции волочения с целью получения заготовки определенного сечения можно обеспечить точность выполнения диаметра пластически деформированной заготовки в продольном направлении в пределах













Формула изобретения
1. Способ получения спеченного тела кристалла из материала термоэлектрического элемента, при этом указанный способ включает следующие этапы: создание блока материала для термоэлектрического элемента, при этом для получения требуемых термоэлектрических характеристик термоэлектрического элемента электрический ток в указанном блоке подается по определенному направлению; помещение указанного блока в удлиненную ампулу так, что направление прохождения электрического тока через указанный блок совпадает с продольной осью ампулы; дегазация ампулы; выполнение деформационной обработки для уменьшения поперечного сечения указанной ампулы для получения пластически деформированной ампулы, содержащей неспеченную прессовку указанного блока, измельченную в процессе указанной деформационной обработки; выполнение термообработки для спекания указанной неспеченной прессовки внутри пластически деформированной ампулы; извлечение спеченного тела кристалла из пластически деформированной ампулы. 2. Способ по п.1, отличающийся тем, что указанная ампула сделана из металла с коэффициентом линейного расширения более низким, чем у материала термоэлектрического элемента в диапазоне температур термообработки. 3. Способ по п.1, отличающийся тем, что указанная деформационная обработка выполняется обжимом. 4. Способ по п.1, отличающийся тем, что указанная деформационная обработка выполняется прокаткой. 5. Способ по п.1, отличающийся тем, что указанная деформационная обработка выполняется волочением. 6. Способ по п.1, отличающийся тем, что указанная деформационная обработка выполняется поэтапно с целью получения пластически деформированной ампулы требуемого поперечного сечения. 7. Способ по п.6, отличающийся тем, что во время указанной деформационной обработки выполняется отжиг. 8. Способ по п.1, отличающийся тем, что указанный блок имеет форму цилиндра и форма указанной ампулы выполнена такой, что этот указанный блок умещается в полости указанной ампулы. 9. Способ по п. 1, отличающийся тем, что указанный блок имеет прямоугольное сечение и указанная ампула выполнена такой, что цилиндрическая сборка, состоящая из указанного блока и дистанционирующих элементов, умещается в полости указанной ампулы. 10. Способ получения спеченного тела кристалла из материала термоэлектрического элемента, при этом указанный способ включает следующие этапы: выращивание кристалла термоэлектрического элемента с помощью направленной кристаллизации; помещение указанного выращенного кристалла в удлиненную ампулу так, что направление кристаллизации указанного кристалла совпадает с продольной осью указанной ампулы; дегазация указанной ампулы; деформационная обработка для уменьшения поперечного сечения указанной ампулы для получения пластически деформированной ампулы, содержащей неспеченную прессовку из указанного кристалла, измельченного в процессе указанной деформационной обработки; термообработка для спекания указанной неспеченной прессовки внутри пластически деформированной ампулы; извлечение спеченного тела кристалла из пластически деформированной ампулы. 11. Способ получения спеченного тела кристалла из материала термоэлектрического элемента, при этом указанный способ включает следующие этапы: получение предварительно спеченного тела кристалла с ориентацией определенной кристаллографической плоскости материала термоэлектрического элемента в осевом направлении; помещение указанного предварительно спеченного тела кристалла в удлиненную ампулу так, что направление продольной оси предварительно спеченного тела кристалла совпадает с продольной осью указанной ампулы; дегазация указанной ампулы; поэтапная деформационная обработка для уменьшения поперечного сечения указанной ампулы для получения пластически деформированной ампулы, содержащей неспеченную прессовку из указанного предварительно спеченного тела кристалла, измельченного в процессе указанной деформационной обработки; термообработка для спекания указанной неспеченной прессовки внутри пластически деформированной ампулы; извлечение спеченного тела кристалла из пластически деформированной ампулы. 12. Способ по п. 11, отличающийся тем, что указанное предварительно спеченное тело кристалла получают путем измельчения кристалла термоэлектрического элемента, выращенного с помощью направленной кристаллизации, с целью получения порошка и горячим прессованием порошка в неокислительной атмосфере.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18