Магнитный масс-спектрометр с двойной фокусировкой
Изобретение относится к области спектрометрии, а точнее к статистическим масс-спектрометрам, и может быть использовано при создании портативных приборов для изучения химического и изотопного состава газообразных жидких и твердых веществ. Техническим результатом является увеличение достоверности, экспрессивности и точности масс-спектрометрических измерений за счет создания прибора, позволяющего проводить одновременную регистрацию частиц в широком диапазоне масс, число которых ограничено лишь его разрешающей способностью, при сохранении габаритов, веса и разрешающей способности прибора. Малогабаритный магнитный масс-спектрометр содержит источник ионов, цилиндрический конденсатор, секторный магнит, размеры которого соотносятся с диапазоном измеряемых масс, состоящий из двух полюсников, обращенных друг к другу параллельными плоскостями, образующими плоское и перпендикулярное к главной оптической оси входное окно, выходное окно, а также детектор. Выходное окно секторного магнита выполнено в виде части круговой цилиндрической поверхности с радиусом r и осью, расположенной со стороны магнита, перпендикулярно плоскостям полюсников, упомянутая цилиндрическая поверхность пересекает главную оптическую ось магнита, имеющую радиус Rm, соответствующий наибольшей измеряемой массе, на ее угловой длине m, отсчитываемой от плоскости входного окна магнита. Величина отношения r к Rm удовлетворяет соотношению (Rm/R0)tg(3
m/2)
r/Rm
1, где R0 - средний радиус цилиндрического конденсатора,
/3
m
/4. 2 ил., 1 табл.
Предлагаемое устройство относится к области спектрометрии, а точнее к статическим масс-спектрометрам, и может быть использовано для изучения химического и изотопного состава газообразных жидких и твердых веществ.
Высокие аналитические характеристики масс-спектрометрической аппаратуры, универсальность проводимых с ее помощью измерений, высокая точность и чувствительность, возможность полной автоматизации процесса измерения дают большие преимущества по сравнению с другими устройствами при анализе химического и изотопного состава веществ. Решение множества задач как в научных исследованиях, так и при контроле за технологическими процессами в промышленности связано с необходимостью определения состава тех или иных веществ в реальном масштабе времени и с возможностью проведения этого анализа в "полевых" условиях. Потребность в проведении прямого анализа объекта по месту его нахождения возникает в случаях, если перенос образца к стационарному масс-спектрометру невозможен или связан с разбавлением, загрязнением или протеканием химических реакций, а также если предметом исследования является сам процесс изменения во времени химического состава изучаемого объекта. К областям, для которых такие измерения дают особенно очевидные преимущества, прежде всего относится космические исследования, направленные на изучение эволюции солнечной системы, атмосфер планет, межпланетной плазмы по прямым измерениям химического и изотопного состава вещества в спутниковых экспериментах, экологический контроль загрязнения окружающей среды по измерениям состава атмосферы и гидросферы Земли, а также контроль за ходом технологических процессов в промышленности, где необходимо знать количественный состав вовлеченных в производство компонентов, динамику изменения их состава в процессе производства, состав продуктов и отходов. Такие производства имеются в электронной промышленности (проблема примесей в вакуумном производстве), при добыче, переработке и транспортировке газа (состав и качество), в топливной промышленности (входной контроль качества, выбор оптимального режима работы и контроль загрязняющих атмосферу отходов) и др. Для эффективного решения этих задач необходимо создание малогабаритных масс-спектрометров, которые должны отвечать не только основным аналитическим требованиям, но и ряду дополнительных требований. К ним относятся достоверность, экспрессность и точность проводимого анализа при малых размерах, весе и потребляемой мощности прибора. Этих качеств можно добиться с помощью прибора, позволяющего проводить одновременные измерения ряда компонентов в широком диапазоне масс. Малая потребляемая мощность и высокая надежность всегда отличали конструкции магнитных масс-спектрометров благодаря применению в них в качестве масс-анализатора постоянного магнита. Размеры, вес и экспрессность прибора зависят от выбора ионно-оптической схемы в рамках данного типа анализаторов. Известен масс-спектрометр с двойной фокусировкой [1] для автономного анализа химического и изотопного состава образцов вне лаборатории, содержащий цилиндрический конденсатор, секторный магнит с плоскими и перпендикулярными к главной оптической оси входным и выходными окнами, при этом для ионов разных измеряемых масс имеется ряд отдельных выходных окон. В этом приборе схема обеспечивает минимальный вес и размеры при заданной разрешающей способности. В ней возможно проводить одновременное измерение частиц 2-3 различных масс благодаря тому, что анализ частиц с разными массами проводится в одном и том же магните, но в пределах отличающихся друг от друга секторов, причем секторный угол магнита для наибольшей массы составляет 50o. Проведение одновременного анализа большего количества частиц с разными массами (режим масс-спектрографа) затруднено из-за несовместимости выходных окон секторов магнита, используемого для их анализа. Известен масс-спектрометр с двойной фокусировкой для автономного анализа химического и изотопного состава образцов вне лаборатории [2], построенный по схеме Маттауха - Герцога, содержащий цилиндрический конденсатор, 90-градусный секторный магнит с плоскими входным и выходным окнами, причем его выходное окно является единым для всего диапазона измеряемых масс и лежит в плоскости, проходящей через точку пересечения главной оптической оси прибора и входной границы магнита. Прибор позволяет проводить масс-анализ в режиме масс-спектрографа - одновременного измерения частиц всего диапазона масс. В данном приборе характеристики выбирались в пределах схемы Маттауха - Герцога, то есть с использованием 90-градусного секторного магнита. Такое ограничение при выборе схемы не позволяет обеспечить малые размеры и вес магнита при заданном диапазоне измеряемых масс. Наиболее близким техническим решением - прототипом - является масс-спектрометр с двойной фокусировкой для внелабораторного анализа, содержащий цилиндрический конденсатор и магнит, секторный угол которого для наибольшей измеряемой массы может быть выбран ~ 50o, с плоским и перпендикулярным к главной оптической оси входным окном и скошенной плоскостью выходных окон, индивидуально выбранной для каждого секторного угла с целью уменьшения размеров масс-спектрометра и обеспечения возможности независимой юстировки схемы [3] . Такая схема также допускает одновременное измерение частиц 2-3 различных масс при малых габаритах и весе прибора. Приведенные схемы масс-спектрометров либо позволяют проводить одновременный анализ большого количества ионов различных масс (второй аналог), но имеют довольно тяжелую для малогабаритного прибора магнитную систему, либо имеют компактную, облегченную магнитную систему, но дают возможность одновременно измерять частицы лишь 2-3-х различных масс (первый аналог и прототип, причем у прототипа габариты существенно меньше). Задачами изобретения являются повышение достоверности, экспрессности и точности анализа за счет создания масс-спектрометра, позволяющего проводить одновременную регистрацию частиц в широком диапазоне масс, число которых ограничено лишь его разрешающей способностью, при сохранении габаритов, веса и разрешающей способности прибора. Поставленные задачи решаются тем, что в известном магнитном масс-спектрометре с двойной фокусировкой, включающем источник ионов, цилиндрический конденсатор, секторный магнит, размеры которого соотносятся с диапазоном измеряемых масс, состоящий из двух полюсников, обращенных друг к другу параллельными плоскостями, образующими плоское и перпендикулярное к главной оптической оси входное окно, выходное окно, а также детектор, согласно формуле изобретения выходное окно секторного магнита выполнено в виде части круговой цилиндрической поверхности с радиусом r и осью, расположенной со стороны магнита перпендикулярно плоскостям полюсников, упомянутая цилиндрическая поверхность пересекает главную оптическую ось магнита, имеющую радиус Rm, соответствующий наибольшей измеряемой массе, на ее угловой длине































1. V.T.Kogan, A.K.Pavlov, Yu.V.Chichagov et al.// Field Analytical Chemistry and Technology, v.1, 1997, N.6, р. 331-342. 2. A. O. Nier, International Journal of Mass Spectrometry and Ion Processes, v.66, 1985, p.55-73. 3. В.Т.Коган, А.К.Павлов, М.И.Савченко и О.Е.Добычин, ПТЭ, N 4, 1999, с. 141-145.
Формула изобретения

1



где R0 - средний радиус цилиндрического конденсатора;





РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3