Устройство для генерации нейтронного и рентгеновского излучений
Использование: изобретение относится к области плазменной техники и управляемого термоядерного синтеза, в частности к устройствам для генерации нейтронного и рентгеновского излучений. Технический результат изобретения - повышение надежности работы устройства для генерации нейтронного и рентгеновского излучений. Сущность изобретения: устройство для генерации нейтронного и рентгеновского излучений содержит импульсный источник электромагнитной энергии, например взрывомагнитный генератор, размыкатель тока и подключенную к выходу размыкателя плазменную камеру с предварительным замагничиванием плазмы. Устройство дополнительно содержит индуктивный элемент с возможностью регулирования величины индуктивности с помощью экрана, последовательно соединенный импульсным источником и размыкателем тока и расположенный между ними. 2 ил.
Изобретение относится к области плазменной техники, в частности к устройствам для генерации нейтронного и рентгеновского излучений за счет получения высокотемпературной плазмы.
Известны устройства для генерации нейтронного и рентгеновского излучений, получаемых с помощью нагрева плазмы. Например, в работе "An explosive generator - powered plasma focus", J. Bernard et al. Physics Letter, vol. 35A, N 4, 1971, p.288-289 описано устройство для получения нейтронного и рентгеновского излучения, содержащее источник электромагнитной энергии в виде взрывомагнитного генератора (ВМГ), размыкателя тока и плазменную камеру, подключенную к выходу размыкателя. Недостатком данного устройства является то, что в этом устройстве имеют место относительно низкая достигаемая температура плазмы и как следствие недостаточная надежность работы и относительно низкий уровень выхода нейтронного и рентгеновского излучений. Это происходит вследствие того, что в данном устройстве не производится предварительного замагничивания плазмы, что ограничивает скорость ее разгона при воздействии на плазму магнитного поля от протекающего через плазменную камеру тока и, следовательно, ограничивает степень нагрева плазмы. Этот недостаток устранен в другом устройстве для получения высокотемпературной плазмы (см. авторское свидетельство СССР N 1616386, МПК G 21 B 1/00, фиг. 1 и 4, Веселов В.Н., Демидов В.А., Корчагин В.П., Ларцев М.В., Павловский Е. С, заявлено 14.03.88, опубликовано 09.08.95 г., бюл. N 22). В этом авторском свидетельстве приведено описание устройства для получения высокотемпературной плазмы, содержащее импульсный источник электромагнитной энергии, например взрывомагнитный генератор, размыкатель тока, подключенную к выходу размыкателя плазменную камеру с предварительным замагничиванием плазмы и резистор, последовательно соединенный с размыкателем тока. В данном устройстве вследствие того, что предварительная запитка осуществляется за счет диффузии магнитного потока через резистор (см. фиг. 4), последовательно соединенный с размыкателем тока, трудно осуществить оптимальное соотношение между амплитудами токов предварительной (для замагничивания плазмы) и основной (для ускорения и нагрева плазмы) запиток, в результате чего снижается надежность работы устройства. Решаемая задача - создание устройства для исследований процесса нагрева замагниченной плазмы до 2 кэВ и возможности получения рентгеновского и нейтронного излучения. Технический результат предлагаемого изобретения - повышение надежности работы устройства для генерации нейтронного и рентгеновского излучения. Технический результат достигается тем, что по сравнению с известным устройством для получения высокотемпературной плазмы, содержащим импульсный источник электромагнитной энергии, например взрывомагнитный генератор, размыкатель тока и подключенную к выходу размыкателя плазменную камеру с предварительным замагничиванием плазмы, новым является то, что заявляемое устройство дополнительно содержит индуктивный элемент с возможностью регулирования величины индуктивности с помощью экрана, расположенный между импульсным источником и размыкателем и последовательно соединенный с ними. Введение в предлагаемое устройство индуктивного элемента с экраном для регулирования величины индуктивности и его расположение между импульсным источником и размыкателем обеспечивают то, что физические процессы в прототипе и предлагаемом устройстве протекают по-разному. В прототипе замагничивание плазмы осуществляется с помощью тока предварительной запитки (Iпредв), а ускорение и нагрев плазмы происходит с помощью тока основной запитки (Iосн). Основная запитка плазменной камеры обеспечивается за счет применения размыкателя тока, а предварительная запитка осуществляется за счет диффузии магнитного потока от источника электромагнитной энергии (ВМГ) через резистор. До момента размыкания цепи ток предварительной запитки определяется временем, амплитудой протекающего через резистор тока ВМГ и сопротивлением резистора, причем величина сопротивления резистора зависит от протекаемого тока и при колебании тока эта величина будет изменяться. Величина напряжения на резисторе будет равна Up(t)=Iист(t)



где:
Iист 0 - амплитуда тока импульсного источника в момент разрыва цепи (tразр);
Lист - величина индуктивности импульсного источника;
Lкам - величина индуктивности камеры;
Iпредв 0 - величина тока предварительной запитки в момент tразр. Для получения максимально возможной температуры в плазме, а следовательно, и для достижения максимального выхода нейтронного и рентгеновского излучения отношение токов основной и предварительной запиток должно находиться в строгом соответствии с составом и давлением газа в плазменной камере и в зависимости от этих факторов находится в пределах 3...5. Для устройства по а. с. N 1616386 отношение токов основной и предварительной запиток (К) выразится следующим соотношением

В данном устройстве вследствие того, что предварительная запитка осуществляется за счет диффузии магнитного потока через резистор (см. фиг. 4), последовательно соединенный с размыкателем тока, трудно осуществить оптимальное соотношение между амплитудами токов предварительной и основной запиток. Это связано с тем, что величина магнитного потока, диффундирующая через резистор в плазменную камеру в процессе предварительной запитки, зависит от величины протекающего через резистор тока в ВМГ и при колебаниях тока в ВМГ будет изменяться и соотношение между токами основной и предварительной запиток. Следует также отметить, что величина сопротивления резистора зависит от величины протекаемого через него тока. Это связано с тем, что величина сопротивления резистора возрастает пропорционально (до момента плавления материала резистора) увеличению количества теплоты, выделяемой на резисторе, то есть сопротивление резистора увеличивается пропорционально Iист 2. Из выражения для соотношения между токами основной и предварительной запиток видно, что колебания амплитуды тока в ВМГ и колебания сопротивления резистора в зависимости от тока в ВМГ приводят к колебаниям и величины соотношения К. При этом соотношение между токами основной и предварительной запиток может выйти за пределы оптимального диапазона. Это приведет к снижению достигаемой температуры плазмы и к уменьшению величины выхода нейтронного и рентгеновского излучений, тем самым снижается надежность работы устройства. В предлагаемом устройстве до момента размыкания цепи ток предварительной запитки течет через индуктивный элемент и величина напряжения, реализуемого на индуктивном элементе индуктивностью Lинд, составляет:



Здесь t - время протекания тока через индуктивный элемент. Отсюда видно, что величина тока предварительной запитки Iпредв(t) определяется только током импульсного источника электромагнитной энергии Iист(t) (током ВМГ) и соотношением индуктивностей плазменной камеры и индуктивного элемента. Амплитуда тока (Iпредв 0) предварительной запитки в предлагаемом устройстве составит:

Амплитуда тока основной запитки будет равна:

где Iист 0 - амплитуда тока импульсного источника электромагнитной энергии в момент разрыва цепи (tразр);
Lист - величина индуктивности импульсного источника электромагнитной энергии;
Lкам - величина индуктивности камеры;
Iпредв 0 - величина тока предварительной запитки в момент tразр. Отношение амплитуд токов основной и предварительной запиток будет равно:

Из этого выражения видно, что отношение токов основной и предварительной запиток в предлагаемом устройстве не зависит от колебаний тока в ВМГ, а определяется только величинами индуктивностей ВМГ, индуктивного элемента и плазменной камеры. Таким образом, подбором величин перечисленных выше индуктивностей мы создаем оптимальное соотношение токов основной и предварительной запиток, которое не зависит от колебания тока в ВМГ, тем самым повышается надежность работы предлагаемого устройства. На фиг. 1 схематично изображено предлагаемое устройство, а на фиг. 2 показан индуктивный элемент. Устройство для генерации нейтронного и рентгеновского излучений содержит импульсный источник электромагнитной энергии (1), например взрывомагнитный генератор, размыкатель тока (2) и подключенную к выходу размыкателя плазменную камеру (3) с предварительным замагничиванием плазмы. Кроме того, устройство содержит индуктивный элемент (4) с экраном (5) для регулирования величины индуктивности, расположенной между импульсным источником (1)и размыкателем (2). В качестве плазменной камеры с предварительным замагничиванием плазмы взята камера, состоящая из отсека ускорения (7), который образован коаксиальными внутренним (8) и наружным (9), электродами и отсека торможения (10) плазмы. При этом кольцевой зазор между электродами (8) и (9) выполнен в форме сопла (11) Лаваля, а отсек торможения (10) - в виде кольцевого зазора между коаксиальными электродами, которые являются продолжениями электродов (8) и (9) и замкнуты между собой со стороны, противоположной соплу (11), металлической крышкой (12). Электроды (8) и (9) выполнены из бескислородной меди и отделены друг от друга керамическим изолятором (13). Плазменная камера заполнена дейтерием или дейтериево-тритиевой смесью газов при начальном давлении ~ 10 Top, наружный диаметр камеры может изменяться в пределах 60... 400 мм. Источник электромагнитной энергии выполнен в виде спирального взрывомагнитного генератора с экспоненциальным нарастанием тока, основными элементами которого являются внутренний цилиндрический проводник (21), снабженный зарядом взрывчатого вещества (ВВ) (22), и спиральный наружный проводник (23), расположенные коаксиально. Размыкатель тока (2) содержит разрываемый проводник (14), установленный между цилиндрическим диэлектрическим струеформирователем (16) и диэлектрическим струегасителем (15). Струеформирователь (16) выполнен с диэлектрическими кумулятивными выемками (17). На поверхности внутреннего токопровода (18) со стороны, противоположной расположению струеформирователя, установлен цилиндрический заряд ВВ (19) с системой инициирования (20). Разрываемый проводник (14) с одной стороны соединен индуктивным элементом (4), а с другой - с внутренним электродом (8) плазменной камеры (3). Индуктивный элемент (см. фиг. 2) представляет собой многозаходную спираль из проводящего материала, например меди, с изолированными витками. Поперечное сечение витков спирали индуктивного элемента должно быть достаточным, чтобы пропустить весь ток ВМГ. Экран (5) выполнен в виде двух металлических полуцилиндров (полуцилиндры изготовлены из пустотельного цилиндра, разрезанного вдоль образующей на две равные части, и установлены относительно друг друга с зазором симметрично), которые могут перемещаться азимутально на величину





Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2