Способ нейтрализации и очистки сточных вод
Изобретение относится к области очистки сточных вод, в частности к способу нейтрализации и очистки сточных вод от ионов тяжелых металлов одного вида с большой концентрацией, и может быть использовано на предприятиях искусственного волокна, цветной металлургии, заводах металлоизделий и гальванических производств. Очистку сточных вод производят в два этапа, при этом на первом этапе сточные воды обрабатывают торфощелочным реагентом при массовом соотношении ионов тяжелых металлов одного вида к торфощелочному реагенту как 1 - (1 - 1,3), в котором торфощелочной реагент представляет собой фильтратный раствор едкого натра, пропущенный через гранулы торфа, далее обработанные сточные воды перемешивают и отстаивают до рН 6,4 - 6,95, а на втором этапе их обрабатывают известковым молоком до рН 8,75 - 9,25, при перемешивании и отстаивании с отделением образовавшегося осадка и с последующим обесцвечиванием. Целесообразно гранулы торфа предварительно обрабатывать 0,1н. раствором соляной кислоты с последующей обработкой их 0,1 - 1н. раствором едкого натра до полного насыщения торфяных гранул ионами натрия. Для обесцвечивания сточных вод используют метод двухстадийной коагуляции алюминийсодержащими коагулянтами с добавлением флокулянта с последующим отстаиванием, отделением образовавшегося осадка и фильтрованием. Сточные воды могут быть обесцвечены также путем двухстадийного озонирования с последующей сорбцией. Способ обеспечивает нейтрализацию и повышение степени очистки кислых стоков от ионов тяжелых металлов при сокращении расхода щелочных реагентов. 3 з.п. ф-лы, 1 табл.
Изобретение относится к области очистки сточных вод, в частности к способу нейтрализации и очистки сточных вод от ионов тяжелых металлов одного вида с большой концентрацией, и может быть использовано на предприятиях искусственного волокна, цветной металлургии, заводах металлоизделий и гальванических производств.
Обычно нейтрализация производственных сточных вод совмещается с их очисткой от ионов тяжелых металлов. Известен способ нейтрализации и очистки кислых сточных вод от ионов тяжелых металлов путем добавления известных щелочных реагентов (раствора гидроксида кальция, едкого натра, карбоната кальция, карбоната натрия и других) и образования труднорастворимых гидроокисей в узком интервале - для меди pH 8 - 10, для цинка pH 9,0 - 9,2 [Очистка производственных сточных вод: Учеб. 0 - 95 пособие для вузов /С.В.Яковлев, Я.А.Карелин, Ю.М.Ласков, Ю. В.Воронов; Под ред. С.В.Яковлева. - 2-е изд., перераб. и доп. - М.: Стройиздат, 1985. - С. 104 - 105]. Если сточные воды получаются щелочными, их при необходимости после отделения осадка нейтрализуют технической серной кислотой. При одновременном наличии в стоках ионов меди, цинка, хрома, никеля оптимальным диапазоном pH при обработке известными щелочными реагентами является pH 8,75 - 9,25, так как в этом диапазоне достигается более полный перевод указанных ионов в форму гидроокисей. Однако при этом не достигается высокого качества очистки стоков. Так, при очистке кислых сточных вод гальванических производств едким натром до pH 9,2; 9,0; 8,75 при исходной концентрации, например, ионов цинка соответственно 12,5; 34,7; 41,8 мг/л остаточная концентрация этих ионов в стоках составила соответственно 2,8; 2,9; 3,7 мг/л [А. с. СССР 778181 А МКИ C 02 F 1/62, опублик. 15.09.83 Бюл. N 34]. Эффект очистки этих стоков соответственно составил 77,6; 91,6; 91,1%. Недостатком способа является не соответствие очищенных стоков нормативным требованиям приема их в системы канализации населенных пунктов или выпуска в водоемы. Для рыбохозяйственных водоемов предельно допустимое содержание (ПДС), например, по никелю и цинку составляет 0,01 мг/л, по меди 0,001 мг/л. Возникает необходимость применения дополнительных методов очистки стоков, например, дорогостоящего метода ионного обмена на искусственных катионитах или дополнительного ввода других реагентов. Также недостатками являются использование известных щелочных реагентов в больших количествах (например, для извлечения из одного литра кислых стоков ионов цинка едким натром расходуется щелочного реагента в массовом соотношении цинк - едкий натр = 1 - 6,0). Другим недостатком также является необходимость строгого соблюдения значений интервала реакции среды обрабатываемого стока, чтобы не создавать условий для растворения амфотерных гидроксидов (например, гидроксидов цинка, гидроксидов меди). Использование в известных способах очистки сточных вод от ионов тяжелых металлов [А. с. СССР 981248, МКИ C 02 F 1/58, опублик. 15.12.82 Бюл. N 46, Заявка Великобритании N 2116537, кл. C 02 F 1/62, 1983, Заявка ФРГ N 2536969 кл. C 07 В 29/00, 1977, А. с. СССР 778181 А МКИ C 02 F 1/62, опублик. 15.09.83 Бюл. N 34] для доочистки гидрофосфата натрия, сульфида натрия, сульфида натрия совместно с флокулирующими агентами приводит к значительному дополнительному загрязнению и засолению очищаемых стоков, к повышению их токсичности. Известна способность торфа (бурого угля) к ионному обмену, обусловленная наличием в его структуре органических соединений активных функциональных групп (COOH, OH и др.). Обмен ионов в торфе протекает в эквивалентных количествах и обратимо. Частица торфа в водной среде всегда имеет отрицательный заряд, что обуславливается диссоциацией функциональных групп и диффузией ионов водорода в дисперсную среду [Физика и химия торфа: Учеб. Пособие для вузов /И. И. Лиштван, Е.Т.Базин, Н.И.Гамаюнов, А.А.Терентьев. - М.: Недра, 1989. - С. 73-79, C.115-116, С.131-135]. На этом основано использование торфа (бурого угля) для очистки стоков от металлов (тяжелых металлов). Известен способ очистки сточных вод от тяжелых металлов при обработке их гуминовыми веществами, выделенными из торфа. Показана эффективность использования гуминовых веществ для осаждения из сточных вод ионов ртути при массовом соотношении металл - гуминовое вещество = 1 - 50 и более [Патент Японии N 52- 29996 кл. 13(9) F2, B 01 D 15/00, опубл.05.08.77]. В [А. с. СССР 1736948 А1 МКИ C 02 F 1/62 опублик. 30.05.92 Б.И. N 20] показано, что при добавлении к 1 литру сточной воды pH 3,85, содержащей 54,7 мг/л ванадия, гуминовых веществ, при массовом соотношении ванадий - гуминовое вещество = (1 - 50; 1 - 72,4) была получена сточная вода с pH соответственно 8,6; 9,1 и с остаточным содержанием ванадия 0,5; 2,0 мг/л. Здесь в качестве гуминовых веществ использовались 1 мас.% водные растворы аммонийных солей гуминовых кислот, выделенных из торфа с pH 9,3 [А. с. СССР 1736948 A1 МКИ C 02 F 1/62 опублик. 30.05.92 Б.И. N 20]. Однако известные способы имеют ряд недостатков. Повышение количества гуминовых веществ усложняет технологию очистки и снижает ее эффективность. Кроме того, использование в больших количествах гуминовых веществ и аммонийных солей гуминовых кислот (в соотношении 1-50 и более) вызывает вторичное загрязнение сточной воды гуматами, фульвокислотами, гиматомелановыми кислотами, примесями сахаров, пектиновых веществ и других. Наиболее близким к описываемому изобретению по технической сущности и достигаемому эффекту очистки является известный способ очистки сточных вод от вольфрама. При обработке их химическим реагентом 0,5 - 4%-ным водным раствором гумата калия или аммония при массовом соотношении вольфрам - гуматы = 1-(1,2-4). Степень извлечения вольфрама из стоков составила 73,4 - 97,4%, реакция среды очищаемых стоков pH 1-2 [А.с. СССР 1758023 A1 МКИ C 02 F 1/62 опублик. 30.08.92 Б.И. N 32]. Несмотря на преимущества этого способа очистки стоков от металла, на его простоту, сравнительно небольшую стоимость при сохранении высокой степени извлечения металла, экологическую безопасность, не требующего применения токсичных веществ, он также имеет ряд недостатков. Хотя снижено количественное (массовое) соотношение использования реагента для очистки стоков по сравнению с использованием гуминовых веществ в 41,7 - 12,5 раз, но оно (соотношение 1 - (1,2-4)) еще велико, что приводит к загрязнению очищаемых стоков фульвокислотами и высоко- и низкомолекулярными органическими соединениями. Так как технология получения гуматов аммония или калия несовершенна, то вместе с гуматами в очищаемых стоках могут быть в значительных количествах мелкие фракции негидролизуемого остатка торфа (угля). Эффект очистки стоков от металла (вольфрама) высок, но он не достигает норм предельно допустимого содержания (для вольфрама 0,0008 мг/л). Для выпадения в осадок гуматов вольфрама в очищаемые стоки добавляется несколько капель концентрированной соляной кислоты, в результате чего pH очищенных стоков равна 1-2. Таким образом, очищенные от вольфрама стоки имеют сильно кислую среду, т.е. имеют большую коррозийную активность к материалам труб и требуют подщелачивания. В известном способе очистки не предусмотрено извлечение фульвокислот (они поступают в очищаемые стоки вместе с реагентом - гуматами), которые обуславливают окрашивание очищаемых стоков в желто-коричневый цвет и могут быть частично осаждены Ca(ОН)2 только лишь в щелочной среде при pH > 8 [Физика и химия торфа: Учеб. Пособие для вузов /И.И. Лиштван, Е.Т. Базин, Н. И. Гамаюнов, А. А. Терентьев. - М.: Недра, 1989. -С. 73-79, C.115-116, C. 131-135]. Задачей изобретения является разработка нового способа нейтрализации и очистки сточных вод, позволяющего нейтрализовать и повысить степень очистки кислых стоков от ионов тяжелых металлов одного вида, до требуемых предельно допустимых норм очистки с меньшим расходом щелочного реагента и с наименьшим содержанием в нем примесей, а также сделать данный способ доступным в производственных условиях. Поставленная задача достигается тем, что в способе нейтрализации и очистки сточных вод путем обработки их щелочным реагентом, согласно изобретению очистку сточных вод проводят в два этапа, при этом на первом этапе сточные воды обрабатывают торфощелочным реагентом при массовом соотношении ионов тяжелых металлов одного вида к торфощелочному реагенту как 1 - (1-1,3), в котором торфощелочной реагент представляет собой фильтратный раствор едкого натра, пропущенный через гранулы торфа, далее обработанные сточные воды перемешивают и отстаивают до pH 6,4 - 6,95, а на втором этапе их обрабатывают известковым молоком до pH 8,75 - 9,25 при перемешивании и отстаивании с отделением образовавшегося осадка и с последующим обесцвечиванием. Целесообразно гранулы торфа предварительно обрабатывать 0,1 н. раствором соляной кислоты с последующей обработкой их 0,1 - 1 н. раствора едкого натра до полного насыщения торфяных гранул ионами натрия. Для обесцвечивания сточных вод используют метод двухстадийной коагуляции алюминийсодержащими коагулянтами с добавлением флокулянта с последующим отстаиванием, отделением образовавшегося осадка и фильтрованием. Сточные воды могут быть обесцвечены также путем двухстадийного озонирования с последующей сорбцией. Использование на первом этапе торфощелочного реагента, по сравнению с 2%-ным водным раствором гумата калия или аммония, дает преимущества. Так как торфощелочной реагент является раствором едкого натра, содержащего растворимые торфяные гуматы натрия, частично гуминовые кислоты и частично вынесенные в фильтрат частицы гранулированного торфа, то в нем содержится мало примесей - мелких частиц торфа. Причем предварительно гранулированный торф обрабатывается 0,1 н. соляной кислотой для полного удаления из него природно-сорбированных ионов и легкогидролизуемых соединений. Потом он обрабатывается 0,1 - 1 н. раствором едкого натра до полного насыщения гранул торфа ионом натрия. Поэтому благодаря высокому содержанию в растворе торфощелочного реагента, раствора едкого натра (с pH, равного pH обрабатываемому раствору едкого натра при натрийнасыщении торфяных гранул) и растворимых торфяных гуматов натрия для нейтрализации и очистки стоков его расходуется намного меньше по сравнению с известными реагентами. Например, для нейтрализации и очистки стоков от ионов цинка вискозных производств торфощелочного реагента расходуется по сравнению с едким натром (известным щелочным реагентом) в 6,0 - 4,6 раза меньше, а по сравнению с известным 2%- ным водным раствором гумата калия или аммония в 1,2 - 3,1 раза меньше. Целесообразность использования торфощелочного реагента (ТЩР) при массовом соотношении металл - ТЩР = 1 - (1-1,30) состоит в том, что при добавлении торфощелочного реагента в кислые стоки до начальной реакции среды pH 4,1 - 5,25 в очищаемых сточных водах происходят следующие процессы: образование гидроксидов металла и их диссоциация по типу основания, ионный обмен и сорбция металла в гуминовых кислотах торфа и гуматах натрия и осаждение образующихся нерастворимых гуматов металла в виде бурых хлопьев. 2NaOH + Me2+ ---> Me(OH)2 + 2Na+ Me(OH)2 ---> Me2+ + 2ОH- 2Hum - COOH + Me2+ ---> Hum - COOMeOOC - Hum

Формула изобретения
1. Способ нейтрализации и очистки сточных вод путем их обработки щелочным реагентом, отличающийся тем, что очистку сточных вод проводят в два этапа, при этом на первом этапе сточные воды обрабатывают торфощелочным реагентом при массовом соотношении ионов тяжелых металлов одного вида к торфощелочному реагенту как 1 - (1 - 1,3), в котором торфощелочной реагент представляет собой фильтратный раствор едкого натра, пропущенный через гранулы торфа, далее обработанные сточные воды перемешивают и отстаивают до рН 6,4 - 6,95, а на втором этапе их обрабатывают известковым молоком до рН 8,75 - 9,25, при перемешивании и отстаивании с отделением образовавшегося осадка и с последующим обесцвечиванием. 2. Способ по п. 1, отличающийся тем, что гранулы торфа предварительно обрабатывают 0,1 н. раствором соляной кислоты, а затем - 0,1 н. раствором едкого натра до полного насыщения торфяных гранул ионами натрия. 3. Способ по п.1, отличающийся тем, что обесцвечивание осуществляют методом двухстадийной коагуляции алюминийсодержащими коагулянтами с добавлением флокулянта с последующим отстаиванием, отделением образовавшегося осадка и фильтрованием. 4. Способ по п.1, отличающийся тем, что обесцвечивание осуществляют путем двухстадийного озонирования с последующей сорбцией.РИСУНКИ
Рисунок 1