Способ измерения частоты импульсов
Изобретение относится к измерительной технике и может быть использовано при создании приборов и систем для измерения частоты следования импульсов в широком диапазоне. Технический результат - расширение диапазона измерений частоты без переключений, улучшение динамичности отслеживания изменений частоты во времени и снижение погрешности. Способ основан на формировании эталонных меток времени с периодом Тo и образцовых интервалов времени Тоб, а также числа М периодов измеряемой частоты в образцовом интервале, с последующим вычислением текущей частоты по формуле Fтек = М/Тоб и отличается тем, что в нем границы образцовых интервалов устанавливаются по моментам прихода импульсов измеряемой частоты, положение этих границ определяется по числу эталонных меток времени от начала предельного интервала, выбираемого большим или равным периоду низшей измеряемой частоты, до начала (Nн) и конца (Nк) образцового интервала, а длительность образцового интервала определяется как Тоб= Tо (Nк - Nн). 3 ил.
Изобретение относится к измерительной технике и может быть использовано при создании приборов и систем для измерения частоты следования импульсов с широким диапазоном.
Известны различные способы измерения частоты. Так, в "Цифровом способе измерения частоты" согласно а. с. 864162, СССР, МКИ G 01 R 23/00, 1981 г. используется вычитание в течение периода измеряемой частоты из записанного ранее числа, соответствующего максимуму диапазона измерения, некоторого количества импульсов, частота которых уменьшается через равные интервалы времени обратно пропорционально разности квадрата и 1-й степени номера текущего интервала. Остаток в конце периода характеризует текущую измеряемую частоту. Способ используется, главным образом, для измерения низких частот. Его недостатками являются малый диапазон измерения и невысокая точность. Другой известный "Способ измерения частоты следования импульсов", а.с. 714302, СССР, МКИ G 01 R 23/02, 1980 г., основан на подсчете числа целых периодов и определении дробных частей периодов измеряемой частоты, попавших в нормированный интервал измерения. Целые и дробные части периодов учитываются при подсчете частоты, что увеличивает точность. За счет дополнительного измерения длительности последнего целого периода в каждом интервале достигается повышение динамичности контроля изменяющейся частоты. К недостаткам этого способа относятся ограниченность диапазона измерения, определяемая требованием, чтобы период измеряемой частоты был много меньше интервала измерения, а также сложность технической реализации. Известен также "Способ измерения частоты вращения частей машин" согласно пат. 148163, ПНР, МКИ G 01 P, 3/489, 1989 г. В этом способе на каждый измерительный импульс формируется ряд дополнительных импульсов в интервале времени, зависящем от измеряемой частоты и меньшем интервала между двумя последовательными измерительными импульсами. Число дополнительных импульсов подсчитывается и служит оценкой измеряемой частоты. Способ обеспечивает высокое быстродействие, но в ограниченном диапазоне частот. К его недостаткам относится также невысокая точность из-за неучета дробных частей периодов дополнительных импульсов в интервале измерения. Наиболее близким по технической сущности к предлагаемому изобретению является "Способ измерения частоты С.А.Самарина" согласно а.с. 885913, СССР, МКИ 5 G 01 R 23/00, 1981 г. Способ включает квантование образцового интервала времени импульсами измеряемой частоты и подсчет числа последних, формирование непрерывной шкалы эталонных меток времени, период следования которых равен образцовому интервалу времени Tо, фиксирование числа Ni импульсов измеряемой частоты на предшествующем текущему образцовом интервале времени, измерение интервала времени






- вычисляют длительность образцового интервала по формулам:
Tоб = Tо(Nк-Nн), если Nк > Nн,
или
Tоб = Tп+Tо(Nк-Nн), если Nк

- подсчитывают числа импульсов Mj измеряемой частоты в минимальных интервалах,
- вычисляют количество периодов M измеряемой частоты путем суммирования чисел Mj в пределах образцового интервала, исключая первый импульс в начале этого интервала, при этом:
- минимальный интервал Tм выбирают большим периода верхней измеряемой частоты и периода времени Tо,
- предельный интервал Tп выбирают равным или большим периода низшей измеряемой частоты,
- длительность отсчетного интервала Tот программным способом устанавливают в границах от минимального до предельного интервала, в зависимости от использования измеряемых данных,
- обновление выходных результатов измерений производят в каждом отсчетном интервале, если период измеряемой частоты не превосходит отсчетного интервала, и в каждом периоде измеряемой частоты - в противном случае. Перечисленные отличия позволяют сделать вывод о соответствии заявленного технического решения критерию "новизна". Признаки, по совокупности отличающие заявленное тех. решение от прототипа, не выявлены в других тех.решениях при изучении данной и смежных областей техники. Они позволяют получить новое качество при измерениях частоты импульсов: способность без переключений измерять частоты в широком диапазоне и оперативно отслеживать изменения высоких, средних и низких частот во времени. Кроме того, за счет привязки границ образцового интервала с высокой точностью к импульсам измеряемой частоты исключаются дробные части периодов измеряемой частоты в образцовом интервале, что повышает точность измерений. Это доказывает соответствие заявленного тех.решения критерию "существенные отличия". В иллюстрациях приведены следующие графические изображения:
- фиг. 1 - укрупненная структурная схема 1-го варианта реализации способа;
- фиг. 2 - укрупненная структурная схема 2-го варианта реализации способа;
- фиг. 3 - эпюры напряжений. Схема для 1-го варианта реализации способа (см. фиг. 1) содержит кварцованный генератор 1 меток времени, выход которого соединен со счетным входом 1-го счетчика 2 и с 1-м входом таймера 3, второй вход которого соединен с выходом старшего разряда 1-го счетчика 2, подключенного также к счетному входу 2-го счетчика 4, выходом старшего разряда соединенного с 3-м входом таймера 3, а кодовыми выходами связанного с входами старших разрядов 3-го регистра 5, чьи входы младших разрядов через 5-й регистр 6 соединены с выходами 1-го регистра 7, своими кодовыми входами подключенного к выходам 1-го счетчика 2. Третий регистр 5 своими выходами параллельно подсоединен к кодовым входам 4-го регистра 8 и к третьей группе кодовых входов 6-го регистра 9, своей второй группой кодовых входов связанного с выходом 4-го регистра 8, первой группой кодовых входов - с выходами накапливающего сумматора 10 через 7-й регистр 15, а первой, второй и третьей группами выходов - с входами персональной ЭВМ 11 через шину 12. Накапливающий сумматор 10 своим информационным входом через 8-й регистр 17 подсоединен к выходу 3-го счетчика 13, который этим же выходом подключен к 4-му входу блока управления 14, чьи 1-, 2- и 3-й входы соединены с соответствующими 1-, 2- и 3-м выходами таймера 3, пятый вход параллельно со счетным входом 3-го счетчика 13 подключен к выходу источника импульсов измеряемой частоты 16, а управляющие и обнуляющие выходы подсоединены к соответствующим управляющим и обнуляющим входам счетчиков 2, 4, 13, регистров 5, 6, 7, 8, 9, 15, 17, сумматора 10 и таймера 3. Схема работает следующим образом. После включения питания блок управления 14 обнуляет подсоединенные к нему счетчики, регистры, сумматор 10 и таймер 3. Кварцованный генератор 1 вырабатывает метки времени с периодом следования Tо (см. фиг. 3а), которые поступают на таймер 3 и на 1-й счетчик 2 и через него на 2-й счетчик 4. Счетчики 2 и 4 работают циклически. Таймер 3 на основе сигнала старшего разряда счетчика 2 и меток времени Tо вырабатывает минимальные интервалы времени Tм (1-й выход), границы которого показаны импульсами на фиг. 3б, а на основе сигнала старшего разряда счетчика 4 - предельные интервалы Tп (3-й выход, см. фиг. 3г). В соответствии с заложенной в него программой таймер 3 вырабатывает также отсчетные интервалы Tот (2-й выход, см. фиг. 3в), периодичность которых определяется решаемыми при использовании измеряемых данных задачами. Если, например, важнее всего отследить быстрые изменения высокой частоты, пренебрегая излишней загрузкой текущими данными ПЭВМ, то интервал Tот выбирается близким к минимальному интервалу Tм. Если же характер работы контролируемого механизма таков, что быстрые изменения измеряемой частоты невозможны и требуется лишь неспешный мониторинг, то интервал Tот выбирается близким к предельному интервалу Tп, который сам выбирается несколько большим или равным периоду низшей измеряемой частоты. Чаще всего выбирается компромисс. Минимальный интервал Tм выбирается большим периода верхней измеряемой частоты и периода меток времени Tо и определяется частотой генератора 1 и разрядностью счетчика 2. Период Tо выбирается как можно меньше, с учетом быстродействия элементов и разумной разрядности счетчиков 1 и 2. Выходные сигналы таймера 3, соответствующие границам интервалов Tм, Tот, Tп, поступают на блок управления 14, который вырабатывает управляющие сигналы для всей схемы, используя также импульсы измеряемой частоты от источника 16 и выходные сигналы разрядов 3-го счетчика 13. Дальнейшую работу схемы удобно рассматривать отдельно для высоких, средних и низких измеряемых частот. На фиг. 3д показаны импульсы достаточно высокой измеряемой частоты, период следования которых Tив меньше Tм и значительно меньше отсчетного интервала Tот. Третий счетчик 13 подсчитывает количество этих импульсов в каждом минимальном интервале, обнуляясь в конце этого интервала своим импульсом обнуления от блока управления 14. По каждому измеряемому импульсу блок управления 14 вырабатывает управляющий сигнал, по которому подсчитанное на этот момент счетчиком 2 число меток времени записывается в 1-й регистр 7, замещая в нем ранее записанное число. По приходу очередного импульса минимального интервала, заканчивающего этот интервал, блок управления 14, удостоверившись, что в этом интервале счетчиком 13 зафиксирован хотя бы один импульс измеряемой частоты (хотя бы в одном разряде - "единица"), дает команду 5-му регистру 6 на перезапись в него из первого регистра 7 числа меток, соответствующего последнему измеряемому импульсу на данном минимальном интервале. Одновременно блок управления 14 дает команду на перезапись в старшие разряды 3-го регистра 5 числа минимальных интервалов, подсчитанных 2-м счетчиком 4 на момент прохождения последнего измеряемого импульса. Так происходит в каждом целом минимальном интервале, причем подсчитанные в этих циклах счетчиком 13 количества импульсов измеряемой частоты Mj и зафиксированные 8-м регистром 17 суммируются сумматором 10 и заносятся в 7-й регистр 15. Первый же пришедший после включения питания импульс отсчетного интервала (фиг. 3в) определит начало 1-го образцового интервала времени по моменту прихода последнего импульса измеряемой частоты в последнем целом минимальном интервале, предшествующем отсчетному импульсу (см. фиг. 3е), и одновременно конца нулевого интервала. Записанные в 3-м регистре 5 на момент начала 1-го образцового интервала число меток времени от 1-го счетчика 2 и число минимальных циклов от 2-го счетчика 4, совместно образующие общее число меток времени Nн1 до начала первого образцового интервала от начала предельного интервала, по команде от блока 14 переписывается в 4-й регистр 8. Накопленное сумматором 10 и хранящееся в 7-м регистре 15 число измерительных импульсов, соответствующее нулевому "образцовому" интервалу, переписывается в регистр 9, а сумматор 10 обнуляется. Результаты нулевого интервала (сразу после включения) не используются, т.к. его начало не привязано к измерительным импульсам, а это может привести к ошибкам. В первом образцовом интервале времени (см. фиг. 3) схема работает, как и ранее. К моменту появления 2-го импульса отсчетного интервала (фиг. 3в) в 3-м регистре 5 хранится число меток времени Nк1 от начала предельного интервала до момента последнего импульса измеряемой частоты в последнем целом минимальном интервале, соответствующего концу 1-го образцового интервала (см. фиг. 3е). Число M1 импульсов измеряемой частоты, подсчитанное 3-м счетчиком 13 и накопленное сумматором 10, относится к 1-му образцовому интервалу и хранится в 7-м регистре 15. По приходу 2-го отсчетного импульса блок управления вырабатывает команды, по которым число M1 из 7-го регистра 15 переписывается в 1-ю группу адресов 6-го регистра 9 (сумматор 10 обнуляется), число Nк1 - в 3-ю группу адресов 6-го регистра 9, а число Nн1 - во 2-ю группу адресов 6-го регистра 9. Одновременно в 4-й регистр 8 заносится число Nк1 из 3-го регистра 5, которое во 2-м образцовом интервале будет соответствовать его началу (Nк1 = Nн2). Числа Nн1, Nк1 и M1, соответствующие 1-му образцовому интервалу, из 6-го регистра 9 через шину 12 поступают в персональную ЭВМ 11, в процессоре которой вычисляется разность Nк1-Nг1, с учетом знака, пропорциональная продолжительности 1-го образцового интервала, и определяется текущая измеряемая частота F1 = M1/Tоб1 = M1/Tо(Nк1-Nн1). Величина Tо хранится в памяти процессора. Результаты измерений могут быть отображены в цифровом виде или в виде графика на мониторе ПЭВМ, отпечатаны на принтере или через локальную вычислительную сеть переданы в ЭВМ более высокого уровня для использования, например, в АСУТП. В принципе вместо ПЭВМ могут быть использованы более простые специализированные устройства (сумматор, умножитель, цифровой индикатор и т.п.), но при этом возможности ограничены. В последующих образцовых интервалах схема работает аналогично, за исключением зоны перехода от одного предельного интервала к другому предельному интервалу, когда может оказаться, что Nк


Fтек = M/Tоб = M/Tо(Nк-Nн). Заметим, что число периодов M = 1 и обновление отсчетных данных происходит в каждом периоде измеряемой частоты (см. фиг. 3н, п). Во втором варианте вследствие несинхронности измеряемых импульсов и меток времени, начало и конец некоторого периода измеряемой частоты T''ин и образцового интервала T''обн могут оказаться в соседних предельных интервалах (см. фиг. 3р, с). При этом Nк




Обновление данных происходит в каждом периоде измеряемой частоты (см. фиг. 3т). Заметим, что с учетом знака разности (Nк - Nн)


- значительное расширение диапазона измеряемых, без переключений, частот (на несколько порядков);
- повышение динамичности отслеживания больших и быстрых изменений высоких частот с периодичностью контроля в несколько миллисекунд и чаще, или реже, а средних и низких частот - через каждый их период;
- повышение точности измерений путем адаптации образцового интервала к периодам измеряемой частоты и высокоточного отсчета его продолжительности и тем самым исключения влияния дробных частей периода измеряемой частоты в пределах образцового интервала. Экономический эффект в настоящее время не может быть оценен, но при широком распространении способа он может быть значительным.
Формула изобретения
Tоб = Tо(Nк - Nн), если Nк > Nн,
или Tоб = Тп + Tо(Nк - Nн), если Nк

РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3