Способ регенерации катализатора жидкофазного окисления олефинов в альдегиды и кетоны
Изобретение относится к нефтехимической промышленности и более конкретно к процессам получения ацетальдегида, ацетона и метилэтилкетона, в частности к способам регенерации катализатора жидкофазного окисления олефинов в альдегиды и кетоны, представляющего собой водный раствор хлоридов палладия, меди и уксусной кислоты, действием окисью углерода, или олефином, или водородом с получением восстановленного твердого осадка, который обрабатывают кислородом или газом, содержащим кислород, с добавлением соляной кислоты и воды, причем к полученной после восстановления смеси осадка солей и маточного раствора добавляют раствор гидрата окиси натрия или углекислого натрия концентрацией 0,08-0,12 мас. % в объемном соотношении к катализаторному раствору 0,8-1,2: 1, маточный раствор отделяют от кристаллов, которые после промывки от катионов натрия и калия окисляют. Технический результат - регенерация отравленного катионами натрия и калия и другими ядами катализаторного раствора практически с полной утилизацией ионов меди и палладия. 1 ил., 2 табл.
Изобретение относится к нефтехимической промышленности и более конкретно к процессам получения ацетальдегида, ацетона и метилэтилкетона.
Ацетальдегид применяется для получения уксусной кислоты, уксусного ангидрида, этилацетата, пентаэритрита и т.д. Низшие кетоны - ацетон, метилэтилкетон - широко используются в качестве растворителей в промышленности лаков и красок, а также полупродуктов при синтезе различных мономеров. Эти соединения получают прямым окислением олефинов в присутствии катализатора - водного раствора солей палладия и меди (Chem. Eng., 168, N 10, 66, 1961, Smidt; Ang. Chem, 74, N 3, 93, 1962). Такие катализаторы не теряют активность в течение продолжительного времени работы, при условии постоянного ввода хлор-ионов в виде соляной кислоты, концентрация которых снижается из-за образования хлорорганических соединений, выводимых из катализаторного раствора при отделении продуктов реакции. В катализаторный раствор периодически добавляют для возмещения потерь хлориды палладия и меди. Также в катализаторный раствор постоянно вводится химочищенная вода для частичной компенсации испаренной воды совместно с продуктами реакции. Кроме того, вода вводится в систему из-за необходимости промывки от соли приборов и уплотнений насосов, при абсорбции паров ацетальдегида (кетонов) из реакционных газов. Кроме химочищенной воды при пропусках конденсаторов в систему поступает оборотная вода. Катионы металлов также содержатся в соляной кислоте и постоянно добавляются в катализаторный раствор. Хотя химочищенная вода содержит незначительное количество солей натрия и калия, при длительной эксплуатации производства катионы калия и натрия накапливаются в катализаторном растворе. В катализаторном растворе в течение 5 - 10-летнего периода эксплуатации накапливается до 20 г/л катионов калия и натрия, которые нейтрализуют содержащиеся в катализаторном растворе хлор-ионы. Кислотность при этом снижается, что приводит к выпадению осадков палладия и основной соли хлорида меди. Для повышения кислотности раствора приходится увеличивать концентрацию хлор-ионов путем дополнительного расхода соляной кислоты. Если в обычном катализаторе отношение между ионами меди и ионами хлора принимается в интервале 1: 1,4 - 1:2, то (п.п. 50, 51) патентной формулы, патента Бельгии N 569036, кл. C 07 B, стр. 41) в катализаторном растворе, содержащем повышенную концентрацию ионов калия и натрия, соотношение между ионами меди и ионами хлора приходится поддерживать в интервале 1:2,8 - 1:3,4. Из-за высокой концентрации хлор-ионов катализатор обладает низкой активностью. Для восстановления активности катализаторный раствор необходимо очистить от ионов калия и натрия. Согласно авторскому свидетельству СССР N 178794, кл. B 01 J 23/96, регенерацию катализатора окисления олефинов проводят следующим образом. Железо-медно-палладиевый катализаторный раствор обрабатывают раствором щелочи при pH 10-11, полученный после отделения осадок промывают водой до нейтральной реакции и растворяют в соляной кислоте. Этот способ имеет следующие недостатки. Для превращения двухлористой меди в гидрат окиси меди необходимо много щелочи. Кроме того, щелочь затрачивается на нейтрализацию уксусной кислоты, содержащейся в катализаторном растворе. Образующийся осадок гидратов окиси меди, палладия состоит из очень мелких кристаллов, трудно отделяемых от маточного раствора. Отделившийся осадок требует очень много воды для отмывки от ионов натрия. Внедрить этот способ в промышленность не удалось, т.к. вместе с осадком в катализаторный раствор попали ионы натрия, что привело к его полному отравлению. Прототипом данного изобретения является патент Бельгии N 569036, кл. C 07 B, согласно которому катализатор регенерируют, действуя окисью углерода, или олефином, или водородом. После прекращения подачи олефина обрабатывают слой твердого катализатора кислородом или газом, содержащим кислород с добавлением соляной кислоты и воды. При такой регенерации невозможно полностью перевести в осадок, образующийся при восстановлении катализатора, хлорид одновалентной меди. При восстановлении катализаторного раствора концентрация соляной кислоты в растворе увеличивается.
Формула изобретения
Способ регенерации катализатора жидкофазного окисления олефинов в альдегиды и кетоны, представляющего собой водный раствор хлоридов палладия, меди и уксусной кислоты, действием окисью углерода, или олефином, или водородом с получением восстановленного твердого осадка, который обрабатывают кислородом или газом, содержащим кислород, с добавлением соляной кислоты и воды, отличающийся тем, что к полученной после восстановления смеси осадка солей и маточного раствора добавляют раствор гидрата окиси натрия или углекислого натрия концентрацией 0,08 - 0,12 мас.% в объемном соотношении к катализаторному раствору 0,8 - 1,2 : 1, маточный раствор отделяют от кристаллов, которые после промывки от катионов натрия и калия окисляют.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3