Способ и устройство для обработки сейсмического сигнала и проведения разведки полезных ископаемых
Сущность изобретения: получают комплект данных трасс сейсмических сигналов, распределенных в заданном трехмерном объеме толщи земли. Разбивают трехмерный объем на множество ячеек анализа, каждая из которых имеет участки по меньшей мере двух сейсмических трасс, локализованых в ней. Вычисляют внутри каждой из ячеек векторные произведения сейсмических трасс. Образовывают матрицы ковариации для каждой из указанных ячеек из векторных произведений. Вычисляют наибольшее собственное значение и сумму собственных значений матрицы ковариации каждой ячейки. Вычисляют сейсмические признаки из отношения наибольшего собственного значения к сумме собственных значений матрицы ковариации каждой ячейки. Образуют характеристическую карту сейсмических признаков выбранной группы ячеек. Технический результат: повышение разрешающей способности и скорости проведения вычислений. 13 с. и 47 з.п. ф-лы, 13 ил.
Изобретение в общем имеет отношение к сейсмической разведке полезных ископаемых, а более конкретно касается создания способов и устройств для разведки и добычи нефти и газа при помощи идентификации структурных и стратиграфических характеристик в трех измерениях (трехмерных характеристик).
При проведении сейсмической разведки полезных ископаемых сейсмические данные получают вдоль линий, которые образованы решетками геофонов на прибрежных участках до прибойной зоны и гидрофонными стримерами, которые пересекают морской участок. Геофоны и гидрофоны работают как датчики при получении энергии, которая ранее была направлена в почву (толщу земли) и отразилась на поверхность от границ раздела породы нижнего горизонта. Энергия на прибрежных участках обычно вырабатывается транспортными средствами Vibroseis", которые передают импульсы путем возбуждения колебаний грунта на поверхности с заданными интервалами и частотами. На морских участках для этой цели часто используют пневмопушки. Слабые изменения энергии, которые получают при ее возврате на поверхность, зачастую отражают вариации в стратиграфическом, структурном и жидкостном содержании резервуаров. При осуществлении трехмерной (3-D) сейсмической разведки используется аналогичный принцип, однако линии и решетки располагаются более тесно, чтобы обеспечивать более детальное перекрытие нижнего горизонта. При таком перекрытии с высокой плотностью возникает необходимость регистрировать, запоминать и обрабатывать чрезвычайно большие объемы информации, прежде чем удается получить окончательные результаты интерпретации. Для обработки информации требуются значительные компьютерные ресурсы и сложное программное обеспечение, позволяющее усилить сигнал, принятый от нижнего горизонта, и подавить шумы, которые маскируют этот сигнал. После проведения обработки данных геофизический персонал комплектует и интерпретирует 3-D сейсмическую информацию в форме 3-D куба данных (см. фиг. 1), который эффективно отображает характеристики нижнего горизонта. При использовании куба данных информация может быть отображена в различной форме. Могут быть построены горизонтальные карты временных срезов на выбранных глубинах (см. фиг. 2). При использовании компьютерной рабочей станции интерпретатор может также осуществлять срезы через искомое поле и изучать выходы резервуаров на различных сейсмических горизонтах. Могут быть также сделаны вертикальные срезы или поперечные сечения в любом направлении с использованием сейсмических данных или данных, полученных в скважине. Временные карты горизонта могут быть преобразованы по глубине для получения структурной интерпретации на специфическом уровне. Сейсмические данные традиционно получают и обрабатывают с целью получения изображения сейсмических рефлекторов. Однако изменения в стратиграфии часто трудно обнаруживать с использованием традиционных сейсмических изображений в результате ограниченного объема информации, который дают стратиграфические характеристики в поперечном сечении. Хотя такие сечения и дают возможность наблюдения гораздо большего участка этих характеристик, достаточно трудно идентифицировать поверхности сброса (разлома) в 3-D объеме, когда не зарегистрированы отражения от разломов. Когерентность (связность) или сходство (критерий для оценки многоканальной когерентности) являются мерой подобия или расхождения сейсмических трасс. Чем больше когерентность между двумя сейсмическими трассами, тем больше они похожи. Если присвоить когерентности значения в диапазоне от 0 до 1, то "0" означает полное отсутствие когерентности, а "1" означает полное подобие (то есть две трассы идентичны). Когерентность для нескольких трасс может быть определена аналогичным образом. Один из способов вычисления когерентности раскрыт в заявке на патент США N 08/353,934 на имя Багорича и Фармера (заявитель - корпорация Амоко), поданной 12 декабря 1994 г. Способ вычисления сходства раскрыт в заявке на патент США N 60/005,032 на имя Марфарта (Marfurt) и др. (заявитель - корпорация Амоко), поданной 6 октября 1995 г. Изобретение Марфарта и др. предусматривает использование поиска грубой силы по возможным глубинам и азимутам. Несмотря на то, что оба способа доказали свою полезность, они имеют некоторые ограничения. Кроме того, всегда желательно иметь повышенную разрешающую способность и высокую скорость проведения вычислений. В соответствии с настоящим изобретением раскрыт многотрассовый процесс собственного разбиения, который является более устойчивым и который имеет более высокую разрешающую способность, чем известные ранее способы. В соответствии с одним из вариантов настоящего изобретения раскрыт способ разведки газа и нефти. Способ включает в себя следующие операции: осуществление выборки комплекта данных трасс сейсмических сигналов, распределенных в заданном трехмерном объеме толщи земли; в подвижном окне определение векторного произведения по меньшей мере двух векторов данных, образованных по меньшей мере из двух сейсмических трасс; образование матрицы ковариации путем добавления векторных произведений; вычисление сейсмического признака, который является функцией по меньшей мере преобладающего собственного значения матрицы ковариации; и образование карты из вычисленных сейсмических признаков по меньшей мере для части заданного трехмерного объема толщи земли. В соответствии с другим вариантом настоящего изобретения способ в соответствии с настоящим изобретением предусматривает кодирование с использованием считываемой при помощи компьютера среде (например, на магнитном диске, магнитной ленте, CD-ROM и т. п. ) для вычисления при помощи компьютера сейсмических признаков. В соответствии с другими вариантами настоящего изобретения при помощи описанного выше процесса получают карту и эту карту используют для локализации залежей нефти и газа. Способ в соответствии с настоящим изобретением особенно хорошо подходит для интерпретации плоскостей разломов в 3-D сейсмическом объеме, а также для обнаружения тонких стратиграфических характеристик в 3D-объеме. Это вызвано тем, что сейсмические трассы, которые пересекаются линией разлома, обычно имеют другой сейсмический характер, чем сейсмические трассы на любой стороне от разлома. Измерение подобия сейсмических трасс (то есть когерентности или непрерывности 3D-объема) вдоль временного среза позволяет обнаруживать линеаменты (контуры) низкой когерентности вдоль этих линий разлома. Такие измерения значений когерентности позволяют выявлять критические детали нижнего горизонта, которые трудно получить при использовании традиционных сейсмических сечений. Путем вычисления подобия трасс вдоль ряда временных срезов можно также при помощи этих линеаментов (контуров) разломов идентифицировать плоскости разломов или поверхности разломов. Многочисленные другие преимущества и характеристики настоящего изобретения будут ясны из последующего детального описания изобретения, описанных в нем примеров его осуществления, а также из формулы изобретения и приложенных чертежей. На фиг. 1 показано графическое изображение информации, полученной при обработке 3-D сейсмических данных. На фиг. 2 показано графическое изображение горизонтального временного среза 3-D сейсмических данных, обработанных в соответствии с известным состоянием техники. На фиг. 3 показаны две смежные сейсмические трассы. На фиг. 4 - 8 показаны схематические диаграммы, отображающие когерентность пар сейсмических трасс в соответствии с настоящим изобретением. На фиг. 9 показано графическое изображение подвижного окна куба анализа. На фиг. 10A, 10B и 10C показаны схематические диаграммы групп сейсмических трасс. На фиг. 11A, 11B и 11C показаны схематические диаграммы двухмерных окон анализа. На фиг. 12 приведена блок-схема элементарного процесса. На фиг. 13A, 13B и 13C показаны графические изображения этого же горизонтального временного среза в соответствии с изобретением Багорича и др. (патент США N 08/353,934), Марфарта и др. (патент США N 60/005032) и в соответствии с настоящим изобретением. Несмотря на то, что настоящее изобретение может быть реализовано в самых разных формах, далее будут рассмотрены детально специфические варианты его осуществления, показанные на чертежах. Следует однако иметь в виду, что дальнейшее описание дано только в качестве примера осуществления настоящего изобретения и ни в коей мере не ограничивает область его применения описанными специфическими вариантами его осуществления или конкретными алгоритмами. Перед тем, как описывать способ в соответствии с настоящим изобретением, будет описан основной принцип работы. Рассмотрим две трассы t1 и t2 в заданном временном окне или в окне глубины, имеющие N выборок, для которых должна быть произведена оценка когерентности. Изображение двух трасс и соответствующего окна анализа показано на фиг. 3. Первая трасса t1 состоит из временных серий (t11, t12, ..., t1N), а вторая трасса t2 состоит из временных серий (t21, t22, ..., t2N). В этих двух временных сериях первый индекс относится к номеру трассы (то есть обозначает трассу 1 или трассу 2), а второй индекс означает номер выборки. При построении графика одной трассы относительно другой трассы в знакомой двухмерной декартовой системе координат можно получить лучшее понимание значения когерентности в контексте настоящего изобретения. При нанесении на график эквивалентных временных выборок от двух трасс [то есть пар точек (t11, t21), (t12, t22) ..., (t1N, t2N)] получают график пересечения двух временных серий. Если по оси x отобразить первую трассу t1, а по оси y вторую трассу t2, то получим диаграмму, показанную на фиг. 4. Она представляет собой конфигурацию таких точек, которые свидетельствуют о когерентности двух трасс. Общей формой двух коррелированных трасс является набор точек, представленных эллипсом. Этот эллипс является обобщением, так как он не отображает каждую индивидуальную точку, а скорее описывает "общую" природу всех точек. Большая и малая оси эллипса ориентированы в направлении, которое определяется геометрией парных точек. Длины двух осей также определяется этой геометрией. Типичное изображение указанных точек и соответствующий эллипс показаны на фиг. 5. Направления и размеры (значения) большой и малой осей эллипса могут быть представлены двумя скалярными векторами, причем более длинный вектор ориентирован вдоль большой оси, а более короткий вектор - вдоль малой оси. Размеры этих двух векторов соответствуют двум собственным значениям матрицы ковариации данных, а нормализованные векторы соответствуют собственным векторам. Собственные векторы, масштабированные при помощи их собственных значений, обозначают размеры и направления большой и малой осей. "Основной компонент" соответствует собственному вектору, который объединен с преобладающим собственным значением. Фиг. 6 - 8 предназначены для того, чтобы дать интуитивное понимание механики, которая скрывается за предшествующим обсуждением. Показанные на этих фигурах трассы образованы с использованием простых вариаций амплитуды и фазы, причем воздействие этих вариаций сказывается на объединенных собственных значениях и собственных векторах. На фиг. 6 показано, как две идентичные трассы вырождаются в идущую под углом 45 градусов линию (то есть в эллипс, малая ось которого упала до нуля). "Нулевая длина" говорит о том, что второе собственное значение равно "нулю" и что собственный вектор, соответствующий преобладающему собственному значению, совмещен с большой осью. В этом случае когерентность максимальная и ее значение равно единице. На фиг. 7 показана ситуация для двух трасс, имеющих равные амплитуды и фазовый сдвиг 45 градусов. Продемонстрировано, как фазовый сдвиг удлиняет меньшую ось и, в результате, увеличивает амплитуду второго собственного значения. Также показаны два собственных вектора, масштабированные при помощи их соответствующих собственных значений. В результате различия этих трасс когерентность снизилась до значения, меньшего единицы. Наконец, на фиг. 8 показан случай с изменением как фазы, так и амплитуды. Обе трассы имеют как фазовый сдвиг 45 градусов, так и отношение амплитуд 2 к 1. Результирующий эллипс имеет не равную нулю малую ось (второе собственное значение не нулевое), что отражает наличие фазового сдвига. И в этом случае вариации амплитуды и фазы приводят к уменьшению когерентности. Основной смысл проведенного обсуждения заключается в том, чтобы показать эвристически, что когерентность может быть выражена как функция собственных значений







Формула изобретения
1. Способ поиска месторождений углеводородов, отличающийся тем, что он включает в себя следующие операции: а) получение комплекта данных трасс сейсмических сигналов, распределенных в заданном трехмерном объеме толщи земли; b) разбиение указанного трехмерного объема на множество вертикально наложенных и главным образом смещенных друг от друга горизонтальных временных срезов и размещение этих временных срезов во множестве ячеек, которые простираются в боковом направлении и вертикально, причем каждый из указанных временных срезов имеет участки по меньшей мере двух сейсмических трасс, локализованные в нем, которые ограничивают вектор данных; с) вычисление для каждого из временных срезов указанных ячеек векторного произведения указанных векторов данных; d) комбинирование указанных векторных произведений для образования матрицы ковариации для каждой из указанных ячеек; е) вычисление в каждой из указанных ячеек меры когерентности указанных сейсмических трасс, причем эта мера когерентности является функцией по меньшей мере наибольшего собственного значения матрицы ковариации; и f) образование сейсмической характеристической карты из множества указанных мер когерентности указанных сейсмических трасс. 2. Способ по п.1, отличающийся тем, что в операции (f) указанная карта образована смещением указанных мер когерентности относительно поверхности, проходящей через заданный сейсмический горизонт. 3. Способ по п.1, отличающийся тем, что в операции (f) указанная карта образована смещением указанных мер когерентности относительно поверхности, проходящей через заданную временную линию. 4. Способ по п.1, отличающийся тем, что в операции (b) указанные ячейки включают в себя кубы анализа, имеющие по меньшей мере пять локализованных в них сейсмических трасс, причем при осуществлении операции (с) каждое векторное произведение имеет форму матрицы 5 х 5. 5. Способ по п.4, отличающийся тем, что в операции (b) указанные ячейки включают в себя кубы анализа, имеющие участки по меньшей мере девяти локализованных в них сейсмических трасс, причем указанные векторы данных имеют девять элементов. 6. Способ по п.5, отличающийся тем, что в операции (b) указанные девять сейсмических трасс образуют решетку три на три. 7. Способ по п.1, отличающийся тем, что в операции (b) указанные ячейки имеют толщину менее 100 мс. 8. Способ по п.1, отличающийся тем, что операция (с) осуществляется во временном домене. 9. Способ по п.1, отличающийся тем, что операция (е) осуществляется путем вычисления указанного наибольшего собственного значения указанной матрицы ковариации, вычисления суммы собственных значений указанной матрицы ковариации и вычисления отношения указанного наибольшего собственного значения к указанной сумме собственных значений указанной матрицы ковариации. 10. Способ по п. 9, отличающийся тем, что указанную сумму собственных значений указанной матрицы ковариации вычисляют образованием суммы диагональных элементов указанной матрицы ковариации. 11. Способ по п.1, отличающийся тем, что при осуществлении операции (b) одна из указанных двух сейсмических трасс в каждой ячейке локализована в смежной ячейке, таким образом, что указанные ячейки пространственно перекрывают друг друга. 12. Способ поиска месторождений углеводородов, отличающийся тем, что он включает в себя следующие операции: а) получение 3-D сейсмических данных, перекрывающих заданный объем земли, причем эти данные включают в себя сейсмические трассы, характеризуемые временем, положением и амплитудой; b) разбиение по меньшей мере одного из участков указанного объема по меньшей мере на одну решетку относительно малых, смежных, перекрывающихся, трехмерных кубов анализа, причем каждый из указанных кубов анализа содержит по меньшей мере три пространственно разнесенные сейсмические трассы, и разбиение каждого куба анализа на множество интервалов выборки, так, что каждый интервал выборки ограничивает множество векторов данных один на три; с) вычисление сейсмического признака для каждого указанного куба, который является функцией преобладающего собственного значения матрицы ковариации, образованной из векторных произведений указанных векторов данных; и d) запоминание указанных сейсмических признаков указанных кубов анализа для вывода на индикацию в виде двухмерной карты подземных признаков. 13. Способ по п.12, отличающийся тем, что в операции (с) указанный сейсмический признак является функцией отношения указанного преобладающего собственного значения к сумме по меньшей мере двух собственных значений матрицы ковариации указанного куба. 14. Способ по п.13, отличающийся тем, что в операции (с) указанный сейсмический признак является функцией отношения указанного преобладающего собственного значения к сумме всех диагональных элементов указанной матрицы ковариации. 15. Способ по п.14, отличающийся тем, что указанный сейсмический признак присвоен по центру его куба анализа. 16. Способ по п.15, отличающийся тем, что операцию (b) осуществляют на множестве временных срезов, причем способ дополнительно включает в себя следующую операцию: е) вывод на индикацию указанных сейсмических признаков последовательных временных срезов, проходящих через указанные центры указанных кубов анализа, для идентификации относительных пространственных и неизменных во времени характеристик. 17. Устройство, которое используют при сейсмической разведке, когда производят запись 3-D сейсмических данных, содержащих отраженную сейсмическую энергию, в виде функции времени, для получения серий сейсмических трасс, причем используют компьютер, который адаптирован для обработки таких сейсмических трасс, отличающееся тем, что оно включает в себя среду, которая может быть считана компьютером и которая содержит команды для указанного компьютера на осуществление процесса, который включает в себя следующие операции: а) получение 3-D сейсмических данных, перекрывающих заданный объем земли, причем эти данные включают в себя сейсмические сигнальные векторы, характеризуемые временем, положением и амплитудой; и b) установление подобия соседних районов указанных 3-D сейсмических данных указанного объема при помощи: (1) разбиения по меньшей мере одного из участков указанных данных на решетку относительно малых, смежных, перекрывающихся, трехмерных кубов анализа, причем каждый из указанных кубов анализа содержит по меньшей мере два вектора данных; и (2) вычисления сейсмического признака для каждого куба, который является функцией основного собственного значения матрицы ковариации, образованной из суммы векторных произведений указанных векторов указанного куба. 18. Устройство по п.17, отличающееся тем, что указанная среда содержит команды для компьютера на осуществление операции (2) при помощи вычисления отношения указанного основного собственного значения матрицы ковариации к сумме собственных значений указанной матрицы ковариации. 19. Устройство по п.17, отличающееся тем, что указанная среда содержит команды для компьютера на осуществление операции (2) при помощи вычисления отношения указанного основного собственного значения матрицы ковариации к сумме диагональных элементов указанной матрицы ковариации. 20. Устройство по п.19, отличающееся тем, что указанная среда содержит команды для компьютера на осуществление операции (1) за счет образования кубов анализа, имеющих в основном прямоугольную решетку по меньшей мере пяти локализованных в ней сейсмических трасс, причем указанная матрица ковариации представляет собой по меньшей мере матрицу пять на пять и образована по меньшей мере из пяти матриц векторных произведений. 21. Устройство по п.20, отличающееся тем, что указанная среда содержит команды для компьютера для назначения сейсмических признаков по центру их кубов анализа. 22. Способ поиска месторождений углеводородов, когда производят запись отраженной сейсмической энергии в виде функции времени для получения серий сейсмических трасс, отличающийся тем, что он включает в себя следующие операции: а) определение векторного произведения двух векторов данных, образованных по меньшей мере из двух сейсмических трасс; b) образование матрицы ковариации за счет добавления указанных векторных произведений операции (а); с) вычисление сейсмического признака, который является функцией по меньшей мере основного собственного значения указанной матрицы ковариации операции (b); d) повтор операций от (а) до (с) через по меньшей мере часть одного временного окна; и е) образование карты указанных сейсмических признаков для указанного временного окна. 23. Способ по п.22, отличающийся тем, что операцию (с) осуществляют путем вычисления отношения указанного основного собственного значения к по меньшей мере частичной сумме собственных значений указанной матрицы ковариации. 24. Способ по п.22, отличающийся тем, что операцию (с) осуществляют путем вычисления отношения указанного основного собственного значения к по меньшей мере частичной сумме диагональных элементов указанной матрицы ковариации. 25. Способ по п.22, отличающийся тем, что операцию (d) осуществляют за счет использования по меньшей мере одной сейсмической трассы, использованной ранее в операции (а), и по меньшей мере двух новых сейсмических трасс, которые расположены вблизи указанной по меньшей мере одной сейсмической трассы. 26. Способ по п.22, отличающийся тем, что операция (а) включает в себя следующие операции: (1) получение 3-D сейсмических данных, перекрывающих заданный объем земли, причем эти данные включают в себя сейсмические трассы, характеризуемые временем, положением и амплитудой; и (2) разбиение по меньшей мере одного из участков указанного объема по меньшей мере на одно временное окно, которое содержит решетку относительно малых, смежных, перекрывающихся, трехмерных кубов анализа, причем каждый из указанных кубов анализа содержит по меньшей мере две сейсмические трассы. 27. Способ поиска месторождений углеводородов, отличающийся тем, что он включает в себя следующие операции: а) считывание набора 3-D сейсмических данных, который включает в себя трассы сейсмических сигналов, распределенные в объеме земли; b) выбор по меньшей мере одного горизонтального среза в указанном объеме и формирование на нем ячеек, образующих простирающиеся в боковом направлении ряды и колонки, причем каждая из указанных ячеек включает в себя по меньшей мере три сейсмические трассы, проходящие в основном через нее; с) вычисление для каждой из указанных ячеек: 1) векторного произведения векторов данных, заданных множеством временных интервалов на каждой стороне от центра указанной ячейки; 2) матрицы ковариации из указанных векторных произведений операции (1); и 3) по меньшей мере самого наибольшего собственного значения указанной матрицы ковариации; и d) изучение указанных собственных значений указанных ячеек вдоль указанного по меньшей мере одного горизонтального среза. 28. Способ по п.27, отличающийся тем, что операцию (3) осуществляют за счет вывода на индикацию отображения наибольших собственных значений указанных ячеек через по меньшей мере один горизонтальный временной срез. 29. Способ по п.28, отличающийся тем, что указанное отображение является функцией наибольшего собственного значения указанной ячейки и суммы собственных значений указанной матрицы ковариации указанной ячейки. 30. Способ поиска месторождений углеводородов, когда производят запись отраженной сейсмической энергии в виде функции времени для получения серий сейсмических трасс, отличающийся тем, что он включает в себя следующие операции: а) преобразование 3-D сейсмических данных в относительно малые, смежные, перекрывающиеся, трехмерные кубы анализа, которые содержат множество сейсмических трасс; b) определение векторного произведения двух векторов данных, ограниченных при помощи указанных кубов анализа; с) образование матрицы ковариации для каждого куба за счет добавления указанных векторных произведений операции (b); d) вычисление сейсмического признака, который является функцией отношения основного собственного значения каждой матрицы ковариации к сумме всех собственных значений этой матрицы ковариации; и е) построение указанных сейсмических признаков так, что они могут быть выведены на индикацию в виде карты. 31. Устройство для обработки сейсмического сигнала, отличающееся тем, что оно включает в себя среду, которая может быть считана компьютером и которая содержит команды для указанного компьютера на осуществление процесса, который включает в себя следующие операции: 1) выборка из памяти 3-D сейсмических данных, которые перекрывают заданный объем земли; 2) цифровое распределение указанных 3-D сейсмических данных в виде решетки относительно малых трехмерных ячеек, причем каждая из указанных ячеек содержит по меньшей мере три сейсмические трассы; 3) вычисление в каждой из указанных ячеек значения когерентности из собственных значений матрицы ковариации, образованной из множества векторных произведений указанных по меньшей мере трех трасс; и 4) запоминание указанных значений когерентности указанных ячеек для вывода на индикацию некоторых из них в виде двухмерной карты подземных признаков, отображенных при помощи указанных значений когерентности. 32. Устройство по п.31, отличающееся тем, что в операции (3) указанное значение когерентности является по меньшей мере функцией наибольшего из указанных собственных значений указанной матрицы ковариации. 33. Устройство по п.32, отличающееся тем, что указанное значение когерентности является функцией наибольшего указанного собственного значения и суммы указанных собственных значений. 34. Устройство по п.31, отличающееся тем, что считываемая при помощи компьютера среда выбрана из группы, которая включает в себя магнитный диск, магнитную ленту, оптический диск и CD-ROM. 35. Способ поиска месторождений углеводородов, отличающийся тем, что он включает в себя следующие операции: а) получение сейсмических данных, перекрывающих заданный объем земли; b) разбиение указанного объема на решетку относительно малых, смежных, перекрывающихся, трехмерных ячеек, причем каждая из указанных ячеек характеризуется по меньшей мере двумя векторами сейсмических данных, локализованными в ней; с) вычисление матрицы ковариации из векторных произведений указанных векторов данных; и d) нанесение на карту отображений собственных значений указанной матрицы ковариации. 36. Способ по п.35, отличающийся тем, что операцию (с) осуществляют за счет использования матрицы ковариации, образованной при добавлении множества векторных произведений. 37. Способ по п.35, отличающийся тем, что операцию (d) осуществляют за счет нанесения на карту отношения наибольшего собственного значения к сумме собственных значений. 38. Способ поиска месторождений углеводородов, отличающийся тем, что он включает в себя следующие операции: а) получение сейсмической характеристической карты значений когерентности 3-D сейсмических данных для заданного трехмерного объема земли, причем указанную карту получают при помощи компьютера и программы для указанного компьютера, которая дает указанному компьютеру команды на выполнение следующих операций: 1) считывание указанных данных и разбиение указанного объема на решетку относительно малых трехмерных ячеек, причем каждая из указанных ячеек имеет по меньшей мере два вектора сейсмических данных, локализованных в ней; и 2) вычисление в каждой из указанных ячеек значения когерентности для указанных сейсмических трасс, которое является функцией собственных значений матрицы ковариации, образованной из векторных произведений указанных векторов данных; и b) использование указанной карты для идентификации структурных и седиментологических признаков нижнего горизонта, обычно связанных с захватом и накоплением углеводородов. 39. Способ по п.38, отличающийся тем, что он дополнительно включает в себя операцию использования указанной карты для идентификации опасностей бурения. 40. Способ по п.39, отличающийся тем, что он дополнительно включает в себя операцию бурения в местоположении, идентифицированном в операции (b). 41. Способ по п.38, отличающийся тем, что указанная программа дает команды на указанный компьютер для осуществления операции (а) (2) путем: i) вычисления наибольшего собственного значения каждой матрицы ковариации и суммы собственных значений указанной матрицы ковариации; и ii) вычисления отношения указанного наибольшего собственного значения к указанной сумме. 42. Способ по п.41, отличающийся тем, что при осуществлении операции (i) указанная программа дает команды на указанный компьютер для вычисления указанной суммы собственных значений за счет вычисления суммы диагональных элементов указанной матрицы ковариации. 43. Сейсмическая карта, отличающаяся тем, что она подготовлена при помощи способа, который включает в себя следующие операции: 1) выборка при помощи компьютера набора данных, который включает в себя трассы сейсмических сигналов, распределенных по заданному трехмерному объему земли; 2) разбиение указанного трехмерного объема на множество ячеек, распределенных во времени и в пространстве, причем в каждой из указанных ячеек локализовано множество векторов данных; 3) вычисление в каждой ячейке множества векторных произведений, образованных локализованными в ней векторами данных; 4) комбинирование указанных векторных произведений для образования матрицы для каждой ячейки; 5) вычисление преобладающего собственного значения указанной матрицы и суммы диагональных элементов указанной матрицы; и 6) вывод на индикацию указанного преобладающего собственного значения относительно указанной суммы для каждой матрицы заданной группы ячеек, проходящих через заданную поверхность. 44. Сейсмическая карта по п.43, отличающаяся тем, что операцию (6) осуществляют за счет получения отношения указанного преобладающего собственного значения к указанной сумме для каждой матрицы заданной группы ячеек, проходящих через заданную поверхность. 45. Сейсмическая карта по п.43, отличающаяся тем, что в операции (2) каждый из указанных векторов данных имеет по меньшей мере три элемента. 46. Сейсмическая карта по п.43, отличающаяся тем, что операцию (4) осуществляют суммированием всех векторных произведений. 47. Карта для разведки нефти и газа, отличающаяся тем, что она включает в себя: а) главным образом, плоскую среду для регистрации на ней визуально различимых изображений, и b) множество изображений на указанной среде, которые являются функцией преобладающего собственного значения матрицы ковариации, которая образована из векторных произведений подвижного окна векторов данных, отображающих 3-D сейсмическую разведку. 48. Карта по п.47, отличающаяся тем, что указанные изображения являются функцией отношения преобладающего собственного значения к сумме собственных значений матрицы ковариации. 49. Карта по п.47, отличающаяся тем, что указанная среда представляет собой лицевую сторону электронно-лучевой трубки (ЭЛТ). 50. Карта по п.47, отличающаяся тем, что указанные изображения являются функцией отношения преобладающего собственного значения к сумме диагональных элементов указанной матрицы ковариации. 51. Карта по п.47, отличающаяся тем, что указанное подвижное окно включает в себя куб анализа, который содержит по меньшей мере три временных слоя, причем каждый временной слой содержит в себе вектор данных, при этом указанный вектор данных содержит по меньшей мере три элемента сейсмических трасс. 52. Карта по п.51, отличающаяся тем, что указанные собственные значения присвоены по центру каждого куба анализа. 53. Карта для разведки полезных ископаемых, отличающаяся тем, что она образована при помощи способа, который включает в себя следующие операции: а) образование куба когерентности из векторов данных 3-D сейсмических данных, причем указанный куб когерентности содержит трехмерную решетку значений когерентности, которая является по меньшей мере функцией преобладающих собственных значений матриц ковариации указанных векторов данных; и b) вывод на индикацию указанных значений когерентности в виде изображения на поверхности в соответствии с заданным критерием передачи. 54. Карта по п.53, отличающаяся тем, что указанные значения когерентности присвоены по трехмерным координатам, которые в основном совпадают с элементами указанных векторов данных. 55. Карта по п.53, отличающаяся тем, что в операции (b) указанная поверхность является плоскостью, а указанный заданный критерий передачи состоит в том, что указанная плоскость, главным образом, совпадает с временным срезом через указанные 3-D сейсмические данные. 56. Карта по п.53, отличающаяся тем, что в операции (а) каждое значение когерентности является по меньшей мере функцией указанного преобладающего собственного значения и суммы собственных значений соответствующей матрицы ковариации. 57. Устройство для использования в компьютерной рабочей станции, применяемой при разведке нефти и газа, отличающееся тем, что оно включает в себя считываемую при помощи компьютера среду и содержит отображение куба когерентности, причем указанный куб когерентности включает в себя результаты измерений когерентности 3-D сейсмических данных, при этом каждое из указанных измерений является функцией собственных значений матрицы ковариации, образованной при добавлении по меньшей мере двух векторных произведений по меньшей мере двух векторов сейсмических данных. 58. Устройство по п.57, отличающееся тем, что указанные векторы данных характеризуются пространственными и временными координатами, причем указанные результаты измерения когерентности присвоены указанным пространственным и временным координатам. 59. Устройство по п.58, отличающееся тем, что каждый из указанных результатов измерения является по меньшей мере функцией преобладающего собственного значения соответствующей матрицы ковариации. 60. Устройство по п.59, отличающееся тем, что каждый из указанных результатов измерения является по меньшей мере функцией суммы собственных значений.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе
Дата прекращения действия патента: 03.01.2011
Дата публикации: 10.12.2011