Способ лечения увеальной меланомы
Изобретение относится к офтальмологии, в частности к офтальмоонкологии, и предназначено для лечения внутриглазной и конъюнктивальной меланомы. Способ представляет собой интратуморальное введение рекомбинантного ФНО - . При неполном разрушении опухоли дополнительно проводят брахитерапию. Способ позволяет уменьшить размеры опухоли вплоть до полной регрессии и сохранить глаз как орган. 1 з.п. ф-лы, 1 ил.
Изобретение относится к офтальмологии, а именно к офтальмоонкологии, и предназначено для лечения больных с внутриглазной, эпибульбарной и конъюнктивальной меланомой.
На протяжении четырех веков больных с внутриглазными меланомами значительных размеров (проминенцией более 7 мм) лечили с помощью энуклеации (удаление глазного яблока с опухолью). Такого рода лечение позволяло больному избавиться от опухолевого узла вместе с глазом, однако не предотвращало от возникновения метастазов. Энуклеация относится к категории ликвидационных и приводит к инвалидизации больного. За последние 20 лет в связи с достижениями в области локальных методов лечения опухолей появились сведения о возможности двухэтапной брахитерапии. Способ заключается в том, что опухоль дважды подвергалась брахитерапии с интервалом до 1,5 года (чаще 12 месяцев). Второй этап был возможен при условии: 1) если размеры первичного опухолевого узла после регрессии, обусловленной первым этапом локального облучения, были меньше, чем до лечения; 2) сохранности склеры, которая под воздействием большой дозы облучения может подвергнуться лучевой склеромаляции; 3) радиочувствительности опухоли; 4) отсутствия метастазов к моменту второй брахитерапии. Данный способ принят за ближайший аналог. Идея двухэтапной брахитерапии безусловно хороша, поскольку она позволяет расширить показания к органосохранному лечению. Но и она не лишена недостатков. 1. Двухэтапная брахитерапия невозможна при локализации опухоли в области цилиарного тела, поскольку большая доза облучения вызывает лучевой иридоциклит с гипертензией, выраженный болевым синдромом, не купирующийся медикаментозной терапией. 2. Продолжительность реабилитации больного при двухэтапной брахитерапии составляет не менее двух лет, поскольку длительность лучевой реакции и регрессия опухоли могли длиться от 3 месяцев до 1,5 года, и, следовательно, врач мог планировать второй этап не ранее 1 года в среднем. Столь длительная регрессия опухолей значительных размеров, склонных к метастазированию "играет", образно говоря, против больного, поскольку у части больных (25% случаев) после первого этапа происходит метастазирование. Как известно, пациенты с проминенцией опухоли более 5 мм и диаметром более 15 мм относятся к категории лиц повышенного риска возникновения метастазов. 3. Возможно развитие склеромаляции, поскольку доза, необходимая для достижения регрессии опухолевого узла больших размеров, должна быть предельно высока, а склера является первой тканью на пути у радиоактивных частиц, и соответственнo доза, полученная ею, на порядок выше, чем на верхушку опухоли [Методические рекомендации МНИИ глазных болезней имени Гельмгольца. - Бета-терапия опухолей органа зрения. - М., 1988]. 4. Опухоли значительных размеров чаще оказываются радиорезистентными (в 30% случаев), не подвергаются регрессии или демонстрируют только частичную регрессию узла. Таким образом, только небольшая часть больных проходит второй этап органосохранного лечения. Большинство, к сожалению, вынуждены перейти к отсроченной энуклеации. К настоящему моменту известен способ лазерной термотерапии, позволяющий осуществить локальную деструкцию опухолевого узла путем нагревания его до 42-25o. Однако этот способ имеет ограниченные показания. Он невозможен при проминенции более 5 мм или диаметре более 15 мм2, при иридоцилиарной или цилиохориоидальной локализации [IRIS MEDICAL Reference Catalog. Summaries of Studies on Infrared Diode Laser Applications in ophthalmology. - CA. USA. - 1998. - P. 69-87]. Возможно локальное удаление опухоли. Однако при этом должны быть соответствующая локализапия и размеры, позволяющие ее проведение. Операция такого плана требует адекватной подготовки врача и неординарных хирургических навыков. Должно быть соответствующее специальное дорогостоящее оборудование (эндолазер последних поколений с витреотехникой и световодами). Кроме того, ее проведение сопровождается повышенным риском метастазирования или обсеменения здоровых тканей [Basic and Clinical Science Course of American Academy of Ophthalmology. - 1996-1997. - Section 4.- Ophthalmic Pathology and Intraocular Tumor. - P. 235-237]. Эффективного медикаментозного лечения (например, полихимиотерапия или биотерапия) при увеальной меланоме к настоящему моменту нет. В связи с достижениями в области генной инженерии, генной терапии и иммунологии появились сведения о роли некоторых иммунорегуляторных пептидов и ответственных за их продукцию генов в возникновении онкологических заболеваний. Так, дисбаланс в продукции и рецепции ИЛ-2 ассоциируется с развитием лимфопролиферативных процессов. Наше внимание привлек фактор некроза опухоли (ФНО). ФНО относится к семейству цитокинов. Он способен вызывать деструкцию опухолей различного генеза. ФНО убивает опухоль двумя различными механизмами. Во-первых, связь ФНО с высокоаффинными рецепторами на поверхности опухолевых клеток прямо токсична для них. Токсичность заключается в продукции свободных радикалов, разрушении цитоскелетных белков в клетке и возникающих при этом промежуточных эффектах. Нормальные клетки отвечают на ФНО синтезом супероксид-дисмутазы - энзима, который участвует в инактивации свободных радикалов. Опухолевые клетки в силу особенностей своего метаболизма не могут этого сделать. Это объясняет избирательный киллинг опухолевых клеток ФНО. Не установлено, почему развивается геморрагический некроз после введения ФНО только в больших опухолях и нет никакого эффекта при интратуморальном лечении маленьких опухолей. Доказано, что высокий рецептурный уровень определяет эффект ФНО. Во-вторых, ФНО вызывает некроз опухоли, мобилизуя эффекторный ответ хозяина in vivo. Фактически даже опухоли у мышей, не имеющие рецепторы к ФНО, при обработке цитокином гибнут. Причем ФНО селективно уничтожает васкуляризированные опухоли более активно, чем аваскулярные импланты. Гистоморфологический ответ к ФНО выглядит как локализованная реакция Шварцмана в ответ на тромбоз сосудов с последующим геморрагически-ишемическим некрозом опухоли. Опухолевые сосуды первыми вовлекаются в триггерный механизм - шварцмановскую реакцию. Некоторые выделяемые опухолью ангиогенные факторы при этом потенциируют ответ на ФНО. Например, сосудистый эндотелиальный фактор роста. Предлагаемый нами способ лечения увеальной меланомы базируется на экспериментальных данных о роли фактора некроза опухоли альфа (ФНО) в механизмах противораковой защиты, а также его специфических функций. Согласно экспериментальным данным, полученным как in vitro, так и in vivo, ФНО, обладая цитотоксическими и цитостатическими свойствами, повышает активность естественных киллеров (ЕКК), осуществляющих неспецифический киллинг опухолевых клеток-мишеней. ФНО, усиливая экспрессию HLA-LR-антигенов на поверхности макрофагов, способствует быстрому распознаванию ими опухолевых антигенов и элиминации клеток, их несущих [Vassalli P. The pathophysiology of tumor necrosis factors. Annu. Immunol 1992, vol. 10, p. 411-425]. Под влиянием ФНО периферические лимфоциты дифференцируются в лимфокин-активированные киллеры - клетки, обладающие максимальным потенциалом и киллинговыми способностями. Кроме того, ФНО индуцирует продукцию Т-хелперами лимфокинов, повышающих экспрессию молекул МНС I класса на опухолевых клетках, что в свою очередь усиливает чувствительность клеток-мишеней к специфическому лизису цитотоксическими лимфоцитами. На всех субпопуляциях лимфоцитов имеются рецепторы к ФНО. Благодаря этому лимфоциты могут воспринимать ФНО как сигнал к пролиферации и осуществлению специфических функций. В норме продукция ФНО находится на низком уровне, который обеспечивает прямую и обратную связь в цитокиновой сети, поддержание нормальной регуляции иммунного гомеостаза. Однако режим быстро меняется, если в организме появляется клетка, несущая чужеродную информацию. Противоопухолевая активность ФНО реализуется в процессе цитолиза, который условно можно разделить на 4 стадии. I стадия - распознавание клетки-мишени и приближение к ней. Для этой стадии важна экспрессия молекул на мембране клетки-мишени, которые распознаются клеткой-эффектором как чужеродные. В случаях опухолевых клеток меланомы в окружающее пространство поступают иммунорегуляторные молекулы - цитокины, в том числе и ФНО. Они ориентируют клетку-киллер относительно поиска клетки-мишени. ФНО облегчает процесс распознавания, усиливая экспрессию антигенов гистосовместимости, без чего невозможен процесс цитолиза. I стадия заканчивается (условно!) приближением к мишени. II стадия начинается процессом связывания с мишенью или прикрепления к ней. Процесс возможен только в том случае, если мембрана мишени несет чужеродную информацию: отличия в антигенах, отличия в экспрессии маркирующих молекул, в ферментах и др. III стадия начинается тотчас по прикреплении, которое продолжается от 2 до 10 мин. Клетка-эффектор (естественный киллер, лимфокин-активированный киллер, цитотоксический Т-лимфоцит) начинает секретировать белки-предшественники, формирующие в дальнейшем поры. Сформировавшийся белковый конъюгат погружается в мембрану, нарушая ее структуру, и по полому цилиндру внутрь клетки-мишени перетекают цитолизины. В случае опухоли эту роль выполняет ФНО - литический агент естественных киллеров и лимфокин-активированных киллеров, IV стадия заключительная - литический процесс. Разрушенные фрагменты цитоскелета и цитоплазмы вытекают из перфорированной мембраны, наступает лизис клетки. А клетка-эффектор, отсоединившись от мишени, снова вступает в процесс киллинга, повторяя первый и последний этапы. За последнее время появились публикации, свидетельствующие о важной роли этого цитокина в механизмах регрессии опухолевого меланомного имплантата, помещенного в переднюю камеру глаза экспериментального животного (Ferguson T.A. et al. The immune response and the eye: a role for TNT in anterior chamber-associated immune deviation. Investigative Ophthahmology & Visual Science, April 1994, vol. 35, N 5, p. 2643-2651; Filer R.S. et al. "Zytokine in Uveamelanimen" Klin Monatsbl Augenheild 1993, vol. 202, p. 174-179; II. Knisely-TL et al. Emergence of a dominant cytotoxic T lymphocyte antitumor effecte from tumorinfiltrating cells in the anterior chamber of the eye. Cahcer-Immunol-Immunother., 1990, 30(6): 323-30). Предварительные исследования, проведенные нами у 155 пациентов с увеальной меланомой, показали, что абсолютное большинство из них имеет системный и местный дефицит фактора некроза-альфа (ФНО-
















Формула изобретения
1. Способ деструкции крупной увеальной меланомы путем интратуморального введения фактора некроза опухоли-альфа (ФНО -
РИСУНКИ
Рисунок 1
Похожие патенты:
Изобретение относится к новым производным дибензооксазепина или дибензодиоксепина формулы I, где R1 и R2 независимо друг от друга обозначают водород, незамещенный (низш
Изобретение относится к новым производным нафталина или дигидронафталина формулы I, где R1 обозначает -ОН или -O(С1-С4-алкил), R2 - С1-С6-алкил или С5-С7-циклоалкил, Х обозначает -СН(ОН)-, или -СН2-, М обозначает -СН2-СН2- или -СН=СН-, n равно 2 или 3, R3 обозначает 1-пиперидинил или 1-пирролидинил, или их фармацевтически приемлемым солям
Изобретение относится к медицине, в частности к онкоурологии
Изобретение относится к медицине, в частности к онкологии, и может быть использовано при лучевой терапии злокачественных новообразований
Композиции, включающие биологический агент // 2166934
Изобретение относится к новым кумаринхинолонкарбоновым кислотам, в которых система пиридона конденсирована в 3,4-, 6,7- и 7,8-положениях кумариновой системы, общей формулы I где R1R2 = NHCH=C(CO2R6)CO, R3 = NO2 или NH2, R4 = R5 = H, R6 = H или C2H5; R1R2 = NHCH=C(CO2R6)CO, R3 = R4 = H, R5 = F, R6 = H или С2Н5; R1R2 = СО(СО2R6)С = СНNH, R3 = R4 = R5 = H, R6 = H или С2Н5; R1R2 = R3R4 = NHCH= C(CO2R6)CO, R5 = H, R6 = H или С2Н5; R1 = Н или ОН, R2 = R5 = Н, R3R4 = -NHCH=C(CO2R6)CO,R6 = H или С2Н5; R1 = ОН, R2 = R3 = Н, R4 R5 = -СО(СО2R6)С = СНNH, R6 = H или С2Н5; R1 = R5 = Н, R2 - СН3 или CF3, R3R4 = CO(CO2R6)C = CHNH, R6 = H или С2Н5, а также к их фармацевтически приемлемым солям
Изобретение относится к новым нафтилсодержащим соединениям формулы I, где R1 и R2 - H, -OH, -O(C1-C4алкил), -OCOC6H5, -OCO(C1-C6алкил), -OSO2(C4-C6алкил); R3 - 1-пиперидинил, 1-пирролидинил, метил-1-пирролидинил, диметил-1-пирролидинил, 4-морфолино, диметиламино, диэтиламино, 1-гексаметиленимино; промежуточным соединениям, которые пригодны для ослабления симптомов постклимактерического синдрома, включая остеопороз, гиперлипемию и эстрогензависимый рак, и ингибирования фибромы матки, эндометриоза и пролиферации аортальных гладкомышечных клеток
Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для хирургического укрепления склеры при прогрессирующей близорукости, а также для склеропластических операций при других патологических состояниях глаза
Изобретение относится к области медицины, в частности к офтальмологии
Способ получения биосовместимого материала // 2150956
Изобретение относится к медицине, а именно к офтальмологии и может быть использовано для изготовления интракорнеальных линз и имплантатов, кератопротезов и искусственных радужек
Изобретение относится к медицине, в частности к фармацевтической промышленности
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при полостных глазных операциях (экстракции [факоэмульсификации] катаракты с имплантацией ИОЛ, витрэктомии и др
Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано при полостных глазных операциях для внутрикамерной анестезии и для обезболивания при непроникающих хирургических и диагностических манипуляциях на переднем сегменте глаза
Биологически активная добавка // 2161887
Изобретение относится к пищевой и фармацевтической промышленности