Способ томографической оценки распределения плотности и эффективного атомного номера вещества
Изобретение относится к методам диагностики и неразрушающего контроля на основе рентгеновской и гамма-томографии и предназначено для применения в авиации, космонавтике, атомной энергетике, нефтяной и газовой промышленности, машиностроении, медицине. Способ заключается в восстановлении линейных коэффициентов поглощения и рассеяния путем регистрации прошедшего без взаимодействия рассеянного излучения и решения системы уравнений лучевых сумм и математического моделирования. По отношению полученных коэффициентов поглощения и рассеяния восстанавливается распределение эффективного атомного номера. По распределению эффективного атомного номера и линейного коэффициента рассеяния восстанавливается распределение плотности вещества. Технический результат: определение распределения эффективного атомного номера инвариантно к распределению плотности и определение распределения плотности инвариантно к распределению атомного номера. 5 ил.
Изобретение относится к методам диагностики как в технике (неразрушающий контроль и дефектоскопия агрегатов, веществ, материалов, изделий), так и в медицине (рентгеноскопия, маммография), а именно к томографическим методам исследования объектов на рассеянном излучении.
Область применения: авиация, космонавтика, атомная энергетика, нефтяная и газовая промышленность, машиностроение, медицина. Целью заявляемого изобретения является получение более полной информации о распределении свойств в исследуемом объекте. Например, в маммографии - выявление области с наиболее вероятным возникновением опухолей, в том числе злокачественных, в технических приложениях - идентификация распределения веществ с различными плотностями и эффективными атомными номерами. Известны устройства для получения изображений внутренней структуры объекта, основанные, как правило, на принципе регистрации распределения интенсивности прошедшего через объект излучения (US, 3961186, G 01 N 23/20, 01.06.76; US, 4549307, G 03 B 41/16, 22.10.85; RU, 2119660, G 01 N 23/201, 27.09.98), однако данные технические решения не позволяют провести идентификацию распределения веществ с различными плотностями и эффективными атомными номерами. Известен значительный ряд томографов на обратнорассеянном коллимированном излучении (US, 4123654, G 01 N 23/20, 31.10.78; US 4495636, G 01 N 23/20, 22.01.85) в которых, как правило, реконструкция плотности проводится на основе регистрации фотонов, рассеянных лишь одним или несколькими пикселами объекта и в ограниченном угловом диапазоне. Это приводит к крайне незначительному числу регистрированных фотонов от всех рассеянных в объекте, что отражается на низкой разрешающей способности реконструкции, относительно высокой радиационной нагрузке на объект и низкой производительности контроля. К недостатку данных томографов также относится то, что они не позволяют получить численную реконструкцию, а дают возможность лишь визуальной оценки распределения плотности, что приводит к низкой точности определения плотности. В настоящее время известен способ реконструкции распределения плотности (В.А. Горшков. Томограф на неколлимированном рассеянном излучении// Дефектоскопия РАН, 1999 г., N 9,). В указанном способе производят узкоколлимированное облучение объекта с различными углами и координатами рентгеновским или гамма-излучением, измеряют интенсивность рассеянного неколлимированного излучения. При многократном облучении объекта, представленного в виде совокупности пиксел, в пределах которых линейный коэффициент рассеяния может быть принят постоянным, по массиву интенсивности регистрации рассеянного излучения можно получить распределение линейного коэффициента рассеяния, а следовательно, и плотности. Этот объект выбран в качестве прототипа к объекту данной заявки. Данный прототип позволяет: - повысить число регистрированных фотонов; - повысить разрешающую способность реконструкции; - снизить радиационную нагрузку на объект; - повысить производительность контроля; - получить не визуальную, а численную оценку распределения плотности, что повышает точность реконструкции. Однако данный прототип не позволяет провести идентификацию распределения веществ с различными плотностями и эффективными атомными номерами. Задачей заявляемого изобретения является определение распределения эффективного атомного номера вне зависимости (инвариантно) от распределения плотности и определение распределения плотности вне зависимости (инвариантно) от распределения эффективного атомного номера. Так как отношение коэффициентов полного поглощения и рассеяния для энергий менее 200 кэВ зависят от эффективного атомного номера, создается предпосылка к решению задачи определения распределения как эффективного атомного номера, так и распределения плотности вещества. Поставленная задача изобретения решается тем, что в способе томографической оценки распределения плотности и эффективного атомного номера согласно изобретению осуществляют восстановление распределения линейного коэффициента рассения и полного поглощения, определяют отношение линейного коэффициента комптоновского рассеяния к полному коэффициенту поглощения, по которому можно оценить эффективный атомный номер и по нему в совокупности с линейным коэффициентом комптоновского рассеяния плотность. Способ оценки линейного коэффициента рассеяния заключается в следующем. Объект разбивается на пикселы i,j. В объект вводится узкоколлимированное излучение под различными углами








m элементов вектора


где N0 - исходное число фотонов;
Nid - число рассеянных и зарегистрированных детектором в i-том измерении фотонов при вводе излучения в координату x,y, угле ввода

ki - отношение коэффициентов комптоновского рассеяния к полному в i-том измерении (для заданной энергии исходного излучения);


Восстановление (реконструкция) линейного коэффициента поглощения


где S(x,y,




где N0 - исходное число фотонов;
Nd(x,y,


Значение коэффициентов ki,

ki - равным отношению массовых коэффициентов для заданной энергии источника для атомного номера, при отсутствии априорной информации - либо 1, либо среднее его значению для легких элементов; при наличии априорной информации об объекте - отношение коэффициента рассеяния к коэффициенту поглощения для элемента с атомным номером, ближайшим к эффективному атомному номеру объекта;


После первого расчета распределения линейных коэффициентов рассеяния и поглощения по формулам





осуществляется моделирование процесса взаимодействия фотонов с объектом, на основании которого уточняются коэффициенты ki, и

После этого повторяется процедура реконструкции по этим же формулам и затем повторным моделированием уточняются коэффициенты ki и

Данная процедура повторяется до тех пор, пока не стабилизируется результат реконструкции. Реконструкция распределения эффективного атомного номера осуществляется по восстановленному отношению линейного коэффициента рассеяния к линейному коэффициенту поглощения. Так как это отношение для различных атомных номеров различны (для легких элементов наибольшее различие имеет место при энергии фотонов 40-60 кэВ) и известны (см. там же стр. 163-194), по реконструируемым значениям коэффициентов оценивается распределение эффективного атомного номера. Реконструкция распределения плотности осуществляется на основе восстановленного атомного номера и линейного коэффициента поглощения (или рассеяния). Технический результат заключается в определении распределения эффективного атомного номера инвариантно к распределению плотности и определение распределения плотности инвариантно к распределению атомного номера. Примеры, доказывающие реализуемость предлагаемого способа:
- реконструкция композитного материала (авиационная обшивка) (фиг. 1-3),
- сечения молочной железы (фиг.4),
- искусственного объекта с включениями различной плотности и эффективного атомного номера (фиг. 5). Томограмма авиационных сандвичевых композиционных материалов с сотовыми наполнителями, полученная на томографе Комскан (фиг. 1), показывает, что томография на коллимированном рассеянном излучении не выявляет с такой степенью достоверности дефекты сотовой структуры, с какой это возможно с применением неколлимированного рассеянного излучения. Реконструкция на неколлимированном рассеянном излучении (фиг. 2,3) показала достаточно высокое качество реконструкции дефектов сотового наполнителя. На представленных реконструкциях достаточно хорошо видны все дефекты сотовой структуры: обрыв, непроклей, смятие. Исследования показали, что для такого класса объектов двустороннее облучение (фиг. 3) практически не приводит к значимому повышению адекватности реконструкции сотового наполнителя по сравнению с односторонним (фиг. 2). На фиг. 4 представлены сечение фантома молочной железы и полученные отклики (графическое представление интенсивности рассеянного излучения) при облучении его с четырех сторон. Полученные отклики являлись информационной основой реконструкции. Как видно из фиг. 4, восстановленное распределение плотности сечения молочной железы практически адекватно распределению контролируемого объекта. На фиг. 5 представлен искусственный объект с включениями материалов с различным эффективным атомным номером. Для наглядности форма включений с различным эффективным атомным номером по форме представлена символами соответствующего элемента периодической системы на фоне материала с эффективным атомным номером, равным атомному номеру кремния. При этом плотность слоев изменялась в пределах 0,5-2,5 г/см3. На реконструкции, полученные на основе неколлимированного рассеянного и трансмиссионного излучения, оказывают влияние распределения как эффективного атомного номера, так и плотности. По этим реконструкциям нельзя однозначно судить о причине изменения цветности различных областей изображения. Как видно, на реконструкции эффективного атомного номера и плотности практически совпадают с распределениями их в объекте. Такой подход позволяет существенно расширить информативность контроля.
Формула изобретения


где

S - m-мерный вектор, определяющий массив лучевых сумм, измеренных при различных координатах и углах сканирования (x,y,



m элементов вектора


где N0 - исходное число фотонов;
Nid - число рассеянных и зарегистрированных детектором в i-том измерении фотонов при вводе излучения в координату х, у, угле ввода

ki - отношение коэффициентов комптоновского рассеяния к полному в i-том измерении (для заданной энергии исходного излучения);

восстанавливается распределение коэффициента рассеяния, отличающийся тем, что в процессе облучения объекта измеряется интенсивность сквозного прошедшего излучения и на основании системы уравнений лучевых сумм полных коэффициентов поглощения

где S(x,y,



измеренную лучевую сумму коэффициентов поглощения - отклик - определяется как

где Ntd(x,y,


определяется распределение линейного коэффициента поглощения по отношению коэффициентов рассеяния и поглощения, оценивают распределение эффективного атомного номера, на основании которого и восстановленных линейных коэффициентов поглощения или рассеяния вычисляют фактическое распределение плотности.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5