Катод для распыления или электродугового испарения (варианты) и устройство для покрытия или ионной имплантации подложек
Изобретение относится к физике, а именно к катодам магнетронов. Описан линейный катод магнетрона, который может использоваться как источник пара или плазмы для осаждения покрытия или ионной обработки. Катод имеет форму удлиненного прямоугольного стержня с испарением материала, происходящим с испаряемой поверхности, расположенной по периферии стержня, по двум противоположным сторонам и вокруг обоих торцов. По всей испаряемой поверхности устанавливается магнитное поле, которое имеет оставляющую, параллельную поверхности и перпендикулярную продольному направлению катода, образуя вокруг периферии замкнутый магнитный канал, который направляет дуговой разряд или плазменный разряд распыления. Катод может быть конфигурирован либо для распыления, либо для катодного электродугового испарения путем выбора напряженности магнитного поля и средства бокового удержания. Технический результат заключается в том, что обеспечивая в данной конструкции равномерную эрозию катода и потока испаряемого материала в двух направлениях по увеличенной длине, получают равномерное осаждение или имплантацию на больших участках. Раскрыта геометрия крепления и перемещения подложек, которая позволяет эффективно использовать двунаправленное распределение эмиссии пара. 3 с. и 23 з.п. ф-лы, 10 ил.
Настоящее изобретение относится к осаждению покрытий и плазменной обработке (ионная имплантация, травление и т. д.), и, в частности, к катодам магнетронов.
Катоды магнетронов, в которых замкнутое магнитное поле устанавливается по меньшей мере на части испаряемой поверхности катода, получили широкое использование приблизительно за два последних десятилетия в технике катодного распыления и электродугового испарения (напыления). В случае распыляющего катода магнитное поле служит для усиления плазменного разряда в инертном газе и для направления плазмы по траектории замкнутого контура вдоль испаряемой поверхности. В случае катода дугового разряда магнитное поле служит для задания направления одного или более активных пятен дуги по траектории замкнутого контура вдоль испаряемой поверхности. Подобные конфигурации катодов и магнитных полей использовались и для распыления и для электродугового испарения, главные различия которых состоят в требуемой напряженности магнитного поля и средствах бокового удержания разряда. Распыляющиеся катоды обычно имеют напряженность поля в несколько сотен Гаусс, в то время как катоды дугового разряда обычно имеют напряженность поля только несколько десятков Гаусс. Наиболее известные, используемые в настоящее время катоды магнетронов могут быть описаны как имеющие в основном плоскую или цилиндрическую геометрию. Плоские магнетроны главным образом содержат плоскую круглую или прямоугольную пластину из материала, подлежащего испарению. Магнитное поле проходит через или по пластине таким образом, чтобы образовать магнитный канал с замкнутым контуром силовых линий или "гоночный трек" по испаряемой поверхности, как раскрывается, например, в патентах США 5,407,551 (Sieck и др.), 4,162,954 (Morrison), 4,673,477 (Ramalingam и др.) и 4,724,058 (Morrison). Магнитный канал направляет и удерживает распыляющий разряд или дуговой разряд, обычно образуя круглую или овальную эрозионную выемку на испаряемой поверхности (поверхности катода, с которой испаряется материал). Материал, испаряемый посредством любого процесса, испускается в направлениях, по существу перпендикулярных к испаряемой поверхности. В настоящем изобретении под словами "по существу перпендикулярные направления" подразумевается распределение эмиссии, сосредоточенное вблизи перпендикуляра к поверхности, на которой количество материала, испускаемого из конкретной точки на катоде в конкретном направлении, уменьшается как функция угла отклонения от перпендикуляра в этой точке. Подложки, подлежащие покрытию, обычно обращены к поверхности катода и могут вращаться и/или перемещаться для увеличения площади равномерного покрытия. Как раскрывается в патентах США 4,428,259 (Class и др. ) и 4,457,825 (Lamont), части поверхности катода могут быть наклонены относительно плоской поверхности, чтобы влиять на распределение испускаемого материала или профиль эрозии катода. В патенте США 4,404,077 (Fournier) раскрывается триодное прямоугольное плоское устройство распыления, в котором параллельная составляющая поля простирается по незамкнутой траектории на испаряемой поверхности, с эмиттером электронов на одном конце траектории и с коллектором на другом конце. В патенте США 5,480,527 (Welty) раскрыт прямоугольный плоский катод дугового разряда, в котором полярность параллельной составляющей поля меняется на обратную, чтобы производить сканирование дугового разряда назад и вперед по длине испаряемой поверхности. В патентах США 5,380,421 (Gorokhovsky) раскрыт прямоугольный катод электродугового испарения, в котором испаряемая поверхность является одной стороной прямоугольной пластины, имеющей скошенные края, и в котором заявляется, что объединенное статическое и динамическое средство магнита управляет перемещением дугового разряда по длине. В патенте США 5,277,779 (Henshaw) раскрыт распыляющийся катод магнетрона, содержащий прямоугольную конструкцию, в которой эрозионная область проходит по внутренней периферии конструкции, испаряемый материал направляется внутрь, в центр отверстия конструкции, и, подложки, подлежащие покрытию, перемещаются через отверстие. В патенте США 4,116,806 (Love) раскрывается двусторонний распыляющийся катод магнетрона, который имеет отдельный замкнутый магнитный канал на каждой из двух плоских мишеней, расположенных на каждой стороне центральной конструкции, содержащей средство магнита. В патенте США 5,160,585 (Hauzer и др.) раскрывается катод плоского магнетрона, предназначенный либо для электродугового испарения, либо для распыления, в котором часть средств магнита может перемещаться относительно поверхности мишени, чтобы регулировать напряженность поля в зависимости от используемого способа испарения. Цилиндрические магнетроны в основном содержат цилиндрический стержень или трубку из материала, подлежащего испарению. Испаряемая поверхность является в основном полной внешней или внутренней поверхностью цилиндра, в то время как распределение эмиссии зависит от конкретной конфигурации магнитов. В патенте США 4,031,424 (Penfold и др.) раскрывается цилиндрический распыляющийся катод с соленоидальным магнитным полем, параллельным продольной оси цилиндра, который имеет распределение эмиссии, перпендикулярное к внешней поверхности, и (идеально) равномерное по окружности и вдоль длины. В патентах США 4,717,968 (McKelvey), 5,364,518 (Haztig и др.) и 4,849,088 (Veltzop и др.) раскрываются распыляющиеся катоды и катоды дугового разряда, использующие магнитные средства внутри цилиндрической мишени для создания замкнутого магнитного канала и эрозионной области по части внешней поверхности, которые используют относительное перемещение между средством магнита и средством мишени, для достижения равномерной эрозии мишени. Средство магнита может оставаться неподвижным, в то время как цилиндр вращается, или наоборот. Распределение эмиссии по существу перпендикулярно к точкам на поверхности цилиндра, содержащим текучее местоположение эрозионного трека. В патентах США 4,492,845 (Kuljuchko и др. ) и 5,518,597 (Storer и др.) раскрываются короткие цилиндрические катоды электродугового испарения с соленоидальными магнитными полями. Длинные цилиндрические катоды электродугового испарения в основном требуют динамического средства для обеспечения равномерного перемещения дугового разряда по длине катода, как раскрывается, например, в патентах 5,269,898 (Welty) и 5,451,308 (Sablev и др.). В свидетельстве 711787 советского изобретателя раскрывается цилиндрический катод дугового разряда, в котором внешняя катушка создает магнитное поле, перпендикулярное продольной оси катода. Описывается, что в этом случае активные пятна дуги удерживаются в области, в которой силовые линии магнитного поля почти перпендикулярны поверхности катода, и утверждается, что перемещение дуги по окружности достигается посредством вращения катушки вокруг катода. Магнитное поле в этом случае не содержит замкнутый канал и траекторию по поверхности катода. В патенте США 4,430,184 (Mulazie) раскрывается средство изолятора, предназначенное для предотвращения ухода активных пятен дугового разряда с испаряемой поверхности. В патентах США 4,448,659 (Morzison), 4,559,121 (Mulazie) и 4,600,489 (Lefkow) раскрываются кольцевые средства, обладающие магнитной проницаемостью, предназначенные для предотвращения ухода активных пятен дугового разряда с испаряемой поверхности. В патентах США 3,793,179 и 3,783,231 (Sablev и др. ) раскрываются средства экранирования и зазоров, предназначенные для гашения активных пятен дуги, которые уходят с определенной испаряемой поверхности. В патенте США 5,387,326 (Buhl и др.) раскрывается проводящее кольцевое средство, применяющее вихревые токи для удержания дугового разряда. В патентах США 4,515,675 (Kieser и др.), 4,933,064 (Geislez и др. ), 5,133,850 (Kukla и др.), 5,266,178 (Sichmann и др.) и 5,597,459 (Altshuler) описаны средства выступающих боковых стенок, предназначенные для удержания распыляющего разряда, в которых направленные наружу выступы мишени, магнитных полюсных наконечников или экрана на сторонах испаряемой поверхности служат для обеспечения бокового удержания плазмы. Патент США 4,581,118 (Class и др.) раскрывает электрод магнетрона, являющийся держателем подложки, имеющий прямоугольный корпус в форме книги, и ядро магнита с полюсными наконечниками в виде фланца, предназначенный для обеспечения продольного магнитного поля, замыкающегося вокруг корпуса электрода. Утверждается, что устройство обеспечивает равномерную плазменную обработку подложки, закрепленной на электроде, и должно использоваться в сочетании с отдельным распыляющимся катодом, обращенным к электроду-держателю и к подложке. Заявляется, что электрод подложки должен соединяться с источником питания, имеющим напряжение, подходящее для ионизации газа реагента вблизи поверхности подложки без того, чтобы вызывать значительное распыление с подложки. Следовательно, устройство не имеет ни испаряемой поверхности, ни распределения эмиссии пара. Известно использование распыляющихся катодов и катодов электродугового испарения в источниках ионов или плазмы для процессов имплантации или травления, как раскрыто в патентах США 4,994,164 (Bernardet и др.), 5,404,017 (Inuishi и др.), 5,482,611 (Helmer и др.). Известно использование ионов с катода электродугового испарения, для распыления материала из вторичного катода, находящегося под электрическим смещением, с целью осаждения на подложку. Известно использование катодов электродугового испарения в сочетании с процессами химического осаждения из паровой фазы (CVD), как раскрывается в патентах США 4,749,587 (Bergmann) и 5,587,207 (Gorokhovsky). Общие описания оборудования и процессов распыления и электродугового испарения могут быть найдены в следующих источниках: "Thin Film Processes", J. Vossen и соавт., (Academic Press, 1991), "Handbook of Vacuum Arc Science and Technology", R.Boxman и соавт., (Noyes, 1995) "Glow Discharge Processes", B. Chapman (Wiley, 1980), и "Thin Film Deposition - Principles and Practice", D.Smith (McGraw-Hill, 1995). В настоящем описании раскрывается катод магнетрона, который имеет форму, геометрию магнитного поля и распределение эмиссии, отличные от тех, которые имеют известные и доступные в настоящее время катоды магнетронов. В настоящем изобретении катод имеет форму прямоугольного стержня (параллелепипеда), как изображено на фиг. 1. Катод, согласно изобретению, имеет форму стержня по существу прямоугольного поперечного сечения, длина стержня больше любого размера прямоугольного поперечного сечения, внешняя поверхность катода имеет четыре стороны и два торца, четыре стороны содержат первую пару параллельных сторон и вторую пару параллельных сторон, а также испаряемую поверхность, содержащую, по меньшей мере, один материал, подлежащий испарению, при этом испаряемая поверхность составлена из обоих компонентов первой параллельной пары сторон и обоих торцов катода, испаряемая поверхность имеет две кромки, причем каждая кромка определяется пересечением испаряемой поверхности с одной из параллельных сторон второй пары, а средство генерации магнитного поля выполнено с возможностью создания вблизи испаряемой поверхности магнитного поля, причем магнитное поле представлено линиями магнитной индукции, магнитное поле имеет составляющую по всей испаряемой поверхности, которая параллельна испаряемой поверхности и перпендикулярна второй паре параллельных сторон катода, магнитное поле действует с возможностью направления распыляющейся плазмы или, по меньшей мере, одного активного пятна дугового разряда на испаряемую поверхность по траектории замкнутого контура вокруг периферии упомянутого катода с возможностью испарения упомянутого материала, подлежащего испарению, с испаряемой поверхности, средство бокового удержания выполнено с возможностью удержания распыляющейся плазмы или, по меньшей мере, одного активного пятна дугового разряда по бокам между кромками испаряемой поверхности и выполнено с возможностью эмиссии паров материала, подлежащего испарению, причем пары испускаются в направлениях, перпендикулярных испаряемой поверхности. Желательно, чтобы длина катода была равна, по меньшей мере, 4-кратному любому измерению поперечного сечения. Желательно, чтобы длина катода была равна, по меньшей мере, 10-кратному любому измерению поперечного сечения. Желательно, чтобы магнитная индукция параллельной составляющей магнитного поля составляла от 1 до 100 Гс. Желательно, чтобы магнитная индукция параллельной составляющей магнитного поля составляла от 100 до 1000 Гс. Желательно, чтобы магнитная индукция параллельной составляющей магнитного поля составляла от 400 до 2000 Гс. Желательно, чтобы средство генерации магнитного поля содержало, по меньшей мере, одну катушку электромагнита, имеющую центральную ось, причем магнитное поле, созданное катушкой, имеет линии магнитной индукции, параллельные центральной оси, по меньшей мере, в центральной области катушки, и катушка располагается так, чтобы центральная ось была перпендикулярна второй паре параллельных сторон катода, и так, чтобы вся испаряемая поверхность была локализована в пределах центральной области. Желательно, чтобы средство генерации магнитного поля содержало, по меньшей мере, две катушки электромагнита, причем каждая имеет центральную ось, при этом катушки расположены соосно с двух сторон катода так, чтобы центральные оси были перпендикулярны второй паре параллельных сторон катода, а магнитное поле, созданное катушками, имело бы составляющие, параллельные испаряемой поверхности по всей испаряемой поверхности. Желательно, чтобы средство генерации магнитного поля содержало множество постоянных магнитов, установленных на полюсных наконечниках, обладающих магнитной проницаемостью, при этом полюсные наконечники содержали бы, по меньшей мере, два боковых полюсных наконечника и, по меньшей мере, один центральный полюсной наконечник, причем боковые полюсные наконечники были расположены параллельно второй паре параллельных сторон катода и на каждой стороне испаряемой поверхности, а центральные полюсные наконечники были расположены между боковыми полюсными наконечниками и проходили бы, по меньшей мере, через одно отверстие сквозь катод, причем отверстие расположено в плоскости, перпендикулярной второй паре параллельных сторон, и отсутствует пересечение этой плоскости с какой-либо частью испаряемой поверхности, при этом постоянные магниты содержат, по меньшей мере, два набора магнитов, причем, по меньшей мере, один из наборов магнитов устанавливали бы смежно к испаряемой поверхности на каждом из боковых полюсных наконечников, направление намагниченности магнитов перпендикулярно боковым полюсным наконечникам и параллельно испаряемой поверхности, упомянутые магниты в каждом наборе расположены на боковом полюсном наконечнике в матрице вокруг периферии испаряемой поверхности, при этом магниты и полюсные наконечники составляют магнитную цепь, имеющую межполюсной зазор, параллельный испаряемой поверхности и проходящий по всей испаряемой поверхности, а центральный полюсной наконечник выполнен с возможностью обеспечения замыкания контура силовых линий между боковыми полюсными наконечниками для магнитного потока, создаваемого в межполюсном зазоре, магнитная цепь выполнена с возможностью создания в пределах межполюсного зазора магнитного поля, которое имеет составляющую, параллельную испаряемой поверхности в каждой точке на испаряемой поверхности. Желательно, чтобы средство генерации магнитного поля содержало бы множество постоянных магнитов, установленных, по меньшей мере, на одном центральном полюсном наконечнике, обладающем магнитной проницаемостью, а боковой полюсной наконечник был бы расположен параллельно испаряемой поверхности и проходил, по меньшей мере, через одно отверстие сквозь катод, причем отверстие располагалось бы в плоскости, перпендикулярной второй паре параллельных сторон, и отсутствовало бы пересечение этой плоскости с какой-либо частью испаряемой поверхности, постоянные магниты содержали бы, по меньшей мере, два набора магнитов, причем, по меньшей мере, один из наборов магнитов устанавливается вокруг периферии центрального полюсного наконечника на противоположных сторонах катода и смежно к каждой из параллельных сторон второй пары, причем направление намагниченности магнитов параллельно второй паре параллельных сторон и противоположно между наборами магнитов на противоположных сторонах катода, магниты и полюсные наконечники составляют магнитную цепь, имеющую межполюсной зазор между наборами магнитов с противоположных сторон катода, при этом центральный полюсной наконечник обеспечивает замыкание силовых линий между магнитами для потока, созданного в межполюсном зазоре, а магнитная цепь была бы выполнена с возможностью создания в пределах межполюсного зазора магнитного поля, имеющего составляющую, параллельную испаряемой поверхности по всей испаряемой поверхности. Желательно, чтобы средство бокового удержания содержало бы магнитное средство, выполненное с возможностью создания перпендикулярных составляющих магнитного поля на испаряемой поверхности и добавления перпендикулярных составляющих к параллельной составляющей, и получения результирующей кривизны магнитного поля вблизи испаряемой поверхности, при этом кривизна содержала бы выпукло-изогнутый канал линий магнитной индукции в области по всей испаряемой поверхности, а магнитный канал функционировал бы с возможностью направления распыляющейся плазмы или, по меньшей мере, одного активного пятна дугового разряда на испаряемой поверхности по траектории замкнутого контура вокруг периферии катода и для удержания распыляющейся плазмы или активного пятна дуги от ухода по бокам с испаряемой поверхности. Желательно, чтобы средство бокового удержания содержало бы выступы на обеих кромках испаряемой поверхности, выступы имели бы стенки, протягивающиеся наружу от испаряемой поверхности и электрически соединенные с катодом, стенки протягивались бы на расстояние, по меньшей мере, 2 мм над испаряемой поверхностью, по меньшей мере, часть линий магнитной индукции над испаряемой поверхностью проходила бы через стенки, а выступы были выполнены с возможностью предотвращения диффузии распыляющейся плазмы с боков с испаряемой поверхности по линиям магнитной индукции. Желательно, чтобы средство бокового удержания содержало бы, по меньшей мере, два боковых электрода, расположенных смежно к кромкам испаряемой поверхности, при этом электроды имели бы стенки, протягивающиеся наружу от испаряемой поверхности и электрически изолированные от катода, упомянутые стенки протягивались бы на расстояние, по меньшей мере, 2 мм над испаряемой поверхностью, между боковыми электродами отсутствовала бы электрическая связь с катодом или на них подали бы электрическое напряжение смещения, которое было бы выше потенциала катода, по меньшей мере, часть линий магнитной индукции над испаряемой поверхностью проходила бы через стенки, боковые электроды были бы выполнены с возможностью предотвращения диффузии распыляющейся плазмы по бокам с испаряемой поверхности по линиям магнитной индукции. Желательно, чтобы средство бокового удержания содержало бы изолятор, расположенный смежно к обеим кромкам испаряемой поверхности, при этом изолятор был бы выполнен с возможностью предотвращения ухода активного пятна дугового разряда с испаряемой поверхности. Желательно, чтобы средство бокового удержания содержало бы выступы на обеих кромках испаряемой поверхности, при этом выступы имели бы стенки, протягивающиеся наружу от испаряемой поверхности и электрически соединенные с катодом, при этом стенки протягивались бы на расстояние, по меньшей мере, 2 мм над испаряемой поверхностью и, по меньшей мере, часть линий магнитной индукции над испаряемой поверхностью проходила бы через стенки, а выступы были выполнены с возможностью предотвращения ухода активных пятен дуги по бокам с испаряемой поверхности. Желательно, чтобы было стыковое устройство, по меньшей мере, из двух прямоугольных стержней, по меньшей мере, из двух материалов, подлежащих испарению. Желательно, чтобы было крепежное средство и испаряемый элемент, который содержал бы множество сменных элементов, установленных по всей периферии крепежного средства, при этом сменные элементы содержали бы, по меньшей мере, один материал, подлежащий испарению. Желательно, чтобы сменные элементы содержали бы, по меньшей мере, два различных материала, подлежащих испарению. Согласно другому аспекту изобретения предлагается устройство для покрытия или ионной имплантации подложек, содержащее вакуумную камеру, насос, анод, источник питания, и которое содержит, по меньшей мере, один вышеуказанный катод и средство крепления подложек, при этом желательно, чтобы средство крепления подложек содержало бы множество крепежных шпинделей, которые были бы расположены в круговой матрице вокруг катода, при этом круговая матрица шпинделей имела бы средство для вращения вокруг центра матрицы, а каждый из упомянутых шпинделей имел бы средство для вращения вокруг его собственной оси. Желательно, чтобы средство крепления подложек содержало множество крепежных шпинделей, при этом каждый шпиндель содержал бы средство для крепления множества подложек, подлежащих покрытию или имплантации, а упомянутые шпиндели были бы расположены, по меньшей мере, в двух линейных матрицах, по меньшей мере, одна из линейных матриц была обращена к каждой из упомянутой первой пары параллельных сторон катода, причем линейные матрицы имели бы средство для перемещения в направлении, параллельном первой паре параллельных сторон и перпендикулярном к длине катода, причем каждый из шпинделей имел бы средство для вращения вокруг своей собственной оси. Еще одним аспектом изобретения является катод для распыления или электродугового испарения с прямоугольным поперечным сечением и имеющий длину больше любого размера прямоугольного сечения, четыре стороны и два торца, при этом четыре стороны содержат первую пару параллельных сторон и вторую пару параллельных сторон. Желательно, чтобы катод содержал испаряемую поверхность, содержащую, по меньшей мере, один испаряемый материал, а испаряемая поверхность содержала бы первую пару параллельных сторон и два торца. Желательно, чтобы испаряемая поверхность имела бы две кромки, причем каждая кромка задавалась пересечением испаряемой поверхности с одной из параллельных сторон второй пары. Желательно, чтобы включалось средство бокового удержания для удержания распыляющейся плазмы или, по меньшей мере, одного активного пятна дуги по бокам между кромками испаряемой поверхности. Желательно, чтобы включалось средство генерации магнитного поля для создания магнитного поля вблизи испаряемой поверхности, представляемое линиями магнитной индукции и имеющее составляющую по всей испаряемой поверхности, которая параллельна испаряемой поверхности и перпендикулярна второй паре параллельных сторон катода, при этом магнитное поле было бы выполнено с возможностью направления распыляющейся плазмы или, по меньшей мере, одного активного пятна дугового разряда на испаряемую поверхность по траектории замкнутого контура вокруг периферии катода с возможностью испарения материала, подлежащего испарению, с испаряемой поверхности. Катод обычно устанавливают в вакуумной камере параллельно с подложками, которые должны покрываться или имплантироваться, и используют при давлениях ниже 50 миллиторр в любых конфигурациях, т.е., электродугового испарения или распыления. Инертные и/или химически активные газы, такие как аргон, азот, кислород, метан и т.д., могут вводиться в камеру во время работы. При использовании катод обычно соединяют с отрицательным выводом источника питания постоянного тока, а положительный вывод источника питания соединяют с анодом. Анод может быть электрически изолированной структурой внутри вакуумной камеры или может быть самой вакуумной камерой, и/или любым внутренним экраном и т.д. В случае распыляющегося катода источник питания может иметь относительно высокое напряжение и низкий допустимый выходной ток (например, 500 В и 20 А), в то время как для катода дугового разряда источник питания может иметь относительно высокий ток и низкое допустимое напряжение (например, 500 А и 20 В). В случае катода электродугового испарения разряд обычно зажигается механическим пусковым устройством, электрической искрой или лазерным импульсом, в то время как в случае распыления достаточно простого приложения высокого напряжения к катоду, чтобы инициировать разряд. В другом случае к источнику питания постоянного тока или в дополнение к нему катод может работать с источниками питания переменного тока или импульсным. Подложки, подлежащие покрытию или имплантации, могут быть электрически изолированы от катода, анода и камеры и соединены с отрицательным выводом другого источника питания для увеличения энергии ионной бомбардировки во время осаждения или имплантации. В другом случае подложки могут оставаться при потенциале, равном потенциалу земли или близком к нему, в то время как катод смещается положительным потенциалом. В разряде электродугового испарения, в дополнение к испускаемой плазме имеются также капельки плавленого материала катода, выбрасываемые дуговым разрядом. Эти капельки, упоминаемые как макрочастицы, испускаются главным образом под низкими углами относительно поверхности катода. Дополнительное преимущество настоящего изобретения по сравнению с цилиндрическими и плоскими катодами дугового разряда уровня техники состоит в том, что существенная часть этих макрочастиц может быть заблокирована от попадания на подложку анодом или экранирующей структурой, выступающей наружу от сторон поверхности испарения. Для узкого катода относительно короткое боковое экранирование обеспечивает существенное уменьшение макрочастиц с минимальным блокированием испаряемого материала. Например, было экспериментально обнаружено, что в системе покрытия, имеющей подложки, установленные по кругу вокруг катода, как описано ниже, катод электродугового испарения настоящего изобретения снижает число макрочастиц, вкрапленных в покрытие нитрида циркония, по меньшей мере, в 3 раза по сравнению со стандартным коммерческим цилиндрическим катодом электродугового испарения подобного размера. Подложки, подлежащие покрытию или имплантации, могут, например, быть установлены во вращающейся круговой матрице вокруг катода и вдоль его длины или на матрице шпинделей со сложным "планетарным" вращением, как показано на фиг. 9. Эмиссия материала с обеих сторон катода обеспечивает более равномерное покрытие по матрице подложек, чем может быть получено, используя отдельный плоский магнетрон уровня техники. Это может быть выгодно, например, в случае реактивного осаждения покрытия, в котором желательно, чтобы условия вокруг матрицы подложек были настолько однородны, насколько это возможно, чтобы получить однородные свойства (например, цвет). Специалистам будут очевидны различные другие расположения подложек. Например, в системе с линейным перемещением подложек двухстороннее распределение эмиссии настоящего изобретения позволяет одновременно покрывать два параллельных ряда подложек, один с каждой стороны катода, как показано на фиг. 10. Следовательно, в основу настоящего изобретения положена задача обеспечения равномерной эрозии и эмиссии пара в двух противоположных направлениях по удлиненным катодам, что позволяет получать равномерное осаждение или ионную имплантацию на больших участках в разнообразных конфигурациях подложек. Дополнительные задачи состоят в том, чтобы обеспечить возможность работы либо распыляющегося катода, либо катода электродугового испарения путем правильного выбора напряженности магнитного поля и средства бокового удержания для устранения любой потребности в динамическом управлении активным пятном дуги, для уменьшения числа макрочастиц, испускаемых катодом электродугового испарения, и для достижения высокой эффективности использования материала катода в любой конфигурации распыления или испарения. В дальнейшем изобретение поясняется описанием конкретных вариантов его воплощения со ссылками на сопровождающие чертежи, на которых: фиг. 1 изображает общий вид катода магнетрона настоящего изобретения, использующего две катушки электромагнита, показывающий относительную ориентацию испаряемой поверхности, параллельной составляющей магнитного поля и распределения эмиссии паров; фиг. 2 изображает вид сверху силовых линий магнитного поля, создаваемого катушками электромагнита; фиг. 3 изображает вид в разрезе устройства одного варианта воплощения настоящего изобретения, в котором магнитное поле создается постоянными магнитами с направлением намагниченности, параллельным испаряемой поверхности; фиг. 4 изображает общий вид средства генерации магнитного поля варианта воплощения фиг. 3;фиг. 5 изображает вид в разрезе устройства другого варианта воплощения настоящего изобретения, в котором магнитное поле создается постоянными магнитами с направлением намагниченности, перпендикулярным к испаряемой поверхности;
фиг. 6 изображает общий вид средства генерации магнитного поля варианта воплощения фиг. 5;
фиг. 7 изображает диаграмму силовых линий магнитного поля, создаваемого конфигурацией магнитов и полюсов фиг. 3;
фиг. 8 изображает диаграмму силовых линий магнитного поля, создаваемого конфигурацией магнитов и полюсов фиг. 5;
фиг. 9 изображает установку для покрытия или ионной имплантации, в которой матрица подложек вращается вокруг центрального катода настоящего изобретения; и
фиг. 10 изображает установку для покрытия или ионной имплантации, в которой 2 ряда подложек перемещаются линейно по обеим сторонам мимо катода настоящего изобретения. Подробное описание предпочтительных вариантов воплощения
Фиг. 1 изображает упрощенный вид катода магнетрона настоящего изобретения, содержащего катод (1) в виде стержня с прямоугольным поперечным сечением с испаряемой поверхностью 2, расположенной вокруг периферии (включая соответствующие противоположные поверхности, которые не видны на изображении в общем виде). Электромагнитные катушки 3 и 4 расположены соосно с каждой стороны катода 1, их общая ось параллельна испаряемой поверхности 2 и перпендикулярна продольной оси катода. Маленькие стрелки 5 показывают направление магнитного поля вдоль общей оси катушек, обусловленное током в направлении, показанном в катушках 3 и 4. Магнитное поле, направленное вдоль оси, параллельно испаряемой поверхности 2 и перпендикулярно второй паре параллельных сторон катода 1. Большие стрелки 6 показывают основные направления эмиссии паров, которые по существу перпендикулярны испаряемой поверхности 2 в различных точках вокруг катода. Для длинных катодов большая часть пара испускается в двух противоположных направлениях, перпендикулярных продольной оси катода. Боковые элементы 7 размещены вплотную к неиспаряемым сторонам катода 1, которые являются двумя параллельными сторонами катода 1, не входящими в испаряемую поверхность 2. Боковые элементы 7 обеспечивают боковое удержание плазменного разряда на краях испаряемой поверхности и могут содержать изолирующие или металлические пластины, как описано ниже. Могут использоваться обычные средства крепления, водяного охлаждения, экранирования и электрической изоляции, которые здесь не показаны. Катод 1 соединен с отрицательным выводом источника 8 питания плазменного разряда, который может иметь характеристики, подходящие либо для дугового разряда, либо для распыляющего разряда, как описано выше. Положительная клемма источника 8 питания разряда соединена с анодом 22, который может представлять собой металлическую вакуумную камеру или отдельную структуру, которая может быть или не быть заземленной. Ток в катушках 3 и 4 может быть обеспечен источником 15 питания катушек, соединенных с клеммами 9 и 10 катушек, у которых клеммы 11 и 12 соединены между собой. В другом варианте включения (соединения не показаны) ток в катушках может быть обеспечен посредством соединения клеммы 9 катушек к земле (или к аноду) и клеммы 10 к положительному выводу источника 8 питания разряда (или наоборот) таким образом, чтобы разрядный ток из источника 8 питания разряда также протекал через катушки 3 и 4. Катушки 3 и 4 могут быть экранированы от разрядной плазмы внутри или снаружи вакуумной камеры или могут быть открыты для воздействия плазмы в пределах вакуумной камеры и таким образом составлять часть анода разряда. В другом варианте воплощения (соединения не показаны) катушки 3 и 4 расположены внутри вакуумной камеры, открыты для воздействия плазмы и функционируют как единственный анод для разряда. В этом варианте воплощения клеммы 10 и 11 катушек соединены между собой так же, как клеммы 9 и 12 катушек, которые еще соединены с положительным выводом источника 8 питания разряда. Электронный ток, собираемый анодом, следовательно, течет через катушки 3 и 4 на положительную клемму источника 8 питания разряда, создавая такое магнитное поле, как показано маленькими стрелками 5. В этой конфигурации может быть желательно временно заземлять катушки 3 и 4, чтобы способствовать зажиганию плазменного разряда. Фиг. 2 изображает диаграмму линий магнитной индукции в сечении (вид сверху) установки катода и катушек фиг. 1. В проводах 3а и 4a электрический ток направлен в плоскость страницы, а в проводах 3b и 4b направлен из плоскости страницы. Вообще катод может функционировать с током, текущим в любом направлении в катушках. Маленькие стрелки 5 показывают направление линий магнитной индукции в положениях, где они соответствуют маленьким стрелками 5 фиг. 1. Линии магнитной индукции в областях 13 над испаряемой поверхностью 2 по существу параллельны поверхности 2, но слегка выпукло-изогнуты из-за дополнительного присутствия составляющих магнитного поля, перпендикулярных поверхности 2, как описано ниже. Степень изгибания и, следовательно, степень магнитного бокового удержания плазменного разряда может управляться размером и местоположением катушек, причем с большими и более удаленными катушками вызывается меньшее изгибание, а с меньшими и менее удаленными катушками вызывается большее изгибание. Ток в катушке и число витков катушки могут быть выбраны так, чтобы обеспечить желательную напряженность поля, согласно средству обеспечения тока катушки. Например, ток 250 А в катушках 3 и 4 с четырьмя витками из фиг. 2 обеспечит на поверхности катода параллельную составляющую поля приблизительно 40 Гс, в то время как ток 20 А в катушках 3 и 4, имеющих 500 витков каждая, обеспечил бы параллельную составляющую поля приблизительно 400 Гс. Боковые элементы 7 могут выступать на расстояние d, большее нуля над поверхностью (в направлении наружу от нее), и могут иметь боковые стенки 14, обращенные к испаряемой поверхности 2, которые наклонены под углом




Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10