Пневмосепаратор
Изобретение относится к классификации и обогащению полезных ископаемых. Пневмосепаратор с разделительной камерой состоит из вставленных друг в друга воронок, наружная воронка выполнена в форме параболоида, ее профиль и профиль внутренней воронки определяются по математическим зависимостям, наружная воронка установлена с возможностью вращения, и на ее внутренней поверхности выполнены винтовые выступы в виде спирали Архимеда с направлением, противоположным вращению воронки, на внутренней воронке расположены радиально по образующей тонкие пластины, разделяющие камеру на равные секции с установленными в них поперечными отклоняющими отсекателями, между кромкой пластины и внутренней поверхностью наружной воронки образован постоянный по всей длине зазор, верхние разгрузочный и загрузочный патрубки размещены соосно, на конце загрузочного парубка установлен конусообразный распределитель с направляющими, которые связаны с питающими патрубками, входящими в каждую секцию на уровне 1/3 ее длины, а разгрузочный патрубок внутренней воронки выведен по центру нижней части сепаратора соосно разгрузочному патрубку нижней воронки, внутри которого установлен патрубок для подачи воздуха. Изобретение позволяет повысить эффективность сепарации. 1 табл., 4 ил.
Изобретение относится к области классификации и обогащения полезных ископаемых.
Известны пневматические сепараторы насыпного типа, например конусный сепаратор "Полизиус" [Нойбекум] типа А, состоящий из корпуса формы соединенных основаниями двойного конуса, верхним загрузочным отверстием, завихрителем для разрыхления поступающего исходного материала, соосно установленного внутри корпуса пустотелого двойного конуса так, что в верхней части образующийся между ними суживающийся зазор является каналом ускорения и резко расширяющимся на конце канала в диффузор, образующего у основания верхнего конуса зону разделения, а зазор в нижней части двойного конуса разделен на камеры крупнозернистого и тонкого материала [1]. Недостатком данного сепаратора является весьма ограниченная зона разделения, регулируемая разделительным воротником, что снижает эффективность разделения по крупности и тем более по плотности. Наиболее близким к предлагаемому изобретению является сепаратор типа Гумбольдт, разделительная камера которого состоит из вставленных друг в друга двух конусов: внешнего и внутреннего, на наклонной поверхности которых происходит разделение частиц по крупности и плотности. В верхней части сепаратора установлены вращающиеся дефлекторные лопатки, регулирующие движение потока воздуха в рабочих камерах. Удаление легкого материала производится через верхний разгрузочный патрубок, исходный материал подается через вершину наружного конуса вместе с исходным материалом [2]. Недостатком данного сепаратора является неэффективность разделения по плотности. Сепараторы такой конструкции используются в основном для классификации продуктов измельчения неметаллических полезных ископаемых. Эффективность воздушной сепарации по плотности достигается в предлагаемом пневмосепараторе с разделительной камерой, которая состоит из вставленных друг в друга воронок, верхнего загрузочного патрубка и нижнего патрубка для подачи воздуха, верхнего и нижнего разгрузочных патрубков, отличающемся тем, что наружная воронка выполнена в форме параболоида с профилем f1=ax2, где a - коэффициент, зависящий от скорости вращения наружной воронки; x - расстояние по горизонтали от оси сепаратора; и установлена с возможностью вращения и на внутренней поверхности которой выполнены винтовые выступы в виде спирали Архимеда с направлением, противоположным вращению воронки,


Fmр+Fцcos(a)- mg sin(a)=0. N - Fц sin(a) - mg cos(a) = 0. (2, 3)
Так как FтрkN и Fц=mw2х, где w - угловая скорость вращения а, х - радиус, то уравнение (2) с учетом (3) примет вид:
k(Fц sin(a) + mg cos(a) + Fц cos(a) - mg sin(a) = 0. (4)
Разделив уравнение (4) на cos(a) и учитывая, что

получим

поскольку Fц= kw2x. Введя обозначение Р = g/(kw2) и интегрируя выражение (5) с учетом начальных условий х=0, f(0)=0, окончательно получим

Переходя к пределу k --> 0 в выражении (6), получим профиль воронки при отсутствии сил трения:

Отметим, что выражение (7) можно получить и из уравнения (2) при предположении, что Fтр=0 и при этом уравнение (3) не учитывается. Профиль второй воронки, расположенной поверх первой с таким зазором между первой и второй воронками, чтобы площадь нормального к профилю второй воронки сечения оставалась постоянной по мере возрастания Х и равнялась заданной величине S0. Вывод формулы кривой формы сепаратора снабжена рисунком на фиг.4. Возьмем произвольную точку М (х,у) на искомой кривой Y =



Но

Отсюда:

Тогда


Обозначим

Тогда

Отсюда получим:

С другой стороны, рассмотрим точку M1(x+


y-


Из выражения (8) имеем




Решая данное уравнение, имеем:

Приравнивая выражения (9) и (11), получим уравнение для определения у

Решая последнее уравнение, находим искомую кривую:

где

Пневмосепаратор работает следующим образом:
Воздух подается через патрубок для подачи воздуха 15 и затем подается исходный материал через загрузочный патрубок 9 на распределительный конус 10. Материал равномерно распределяется при помощи направляющих 11 и через питающие патрубки 12 подается в рабочую зону сепарации на уровне 1/3 длины сепарационных секций и, попадая в зону действия потока воздуха, подвергается сепарированию, крупные частицы под действием силы тяжести и центробежных сил отбрасываются на поверхность наружной воронки 1. Тяжелые и крупные частицы, прижимаясь к поверхности воронки, при помощи винтовых выступов 2 передвигаются и разгружаются через разгрузочный патрубок для концентрата 14. При этом в ходе перемещения материал постоянно под действием потока воздуха и вибрации подвергается перечистке. Легкие и мелкие частицы поднимаются потоком воздуха, в рабочей зоне сепаратора отбиваются отсекателями 7 и разгружаются через верхние проемы к внутренней поверхности внутренней воронки и сползают по его поверхности между питающими патрубками 12 к разгрузочному патрубку 13 для легкого и мелкого материала. При этом тонкодисперсный (пылевидный) материал выдувается через верхний разгрузочный патрубок 8 и далее направляются в систему пылеподавления. Таким образом, сепаратор благодаря отличительным признакам обеспечивает сепарацию исходного материала не только по крупности, но и по плотности. Эффективность сепарации подтверждается проведенными исследованиями, результаты которых приведены в таблице. Результаты исследований, приведенные в табл. 1, показывают, что показатели обогащения по извлечению имитаторов (чугунных стружек) по классам крупности достаточно высоки и достигают до 92-95% извлечения. Список литературы
1. В. Кайзер Новые конструкции насыпных воздушных сепараторов. Труды Европейского совещания по измельчению М., 1996 с. 543. 2. Г. К. Смышляев. Воздушная классификация в технологии переработки полезных ископаемых. М.: Недра, 1969, 102 с.
Формула изобретения

где a - коэффициент, зависящий от скорости вращения наружной воронки;
x - расстояние по горизонтали от оси сепаратора;

So - площадь сечения камеры пневмосепарации между наружной и внутренней воронками,
и на внутренней воронке расположены радиально по образующей линии тонкие пластины, разделяющие камеру на равные секции с установленными в них поперечными отклоняющими отсекателями, причем между кромкой пластины и внутренней поверхностью наружной воронки образован постоянный по всей длине зазор, верхние разгрузочный и загрузочный патрубки размещены соосно, при этом на конце загрузочного патрубка установлен конусообразный распределитель с направляющими, которые связаны с питающими патрубками, входящими в каждую секцию на уровне 1/3 ее длины, а разгрузочный патрубок внутренней воронки выведен по центру нижней части сепаратора соосно к разгрузочному патрубку нижней воронки, внутри которого установлен патрубок для подачи воздуха.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5