Высокотемпературный полупроводниковый прибор и способ его изготовления
Использование: микроэлектроника, конструкции и технология диодов Шотки. Сущность изобретения: высокотемпературный полупроводниковый прибор (ВПП) содержит полупроводниковую подложку 1, омический электрод 2 и многослойный выпрямляющий электрод 3, расположенный на подложке 1 и включающий барьерообразующий слой 4, связанный с подложкой 1 с образованием барьера Шотки, промежуточный слой 5 из материала на основе тугоплавкого металла и внешний слой 6 из благородного металла. Для повышения температурной и радиационной стойкости слой 4 изготовлен из хрома и связан с подложкой 1 с образованием переходной зоны 8 из карбида хрома, на внешнем слое 6 сформирован выходной контакт 7, при этом подложка 1 выполнена из SiC n+-типа с гомоэпитаксиальным n-слоем 10, легированным азотом до уровня от 7 1015 до 1
1018см-3, расположенным по месту формирования барьера Шотки, а на подложку 3 нанесен защитный герметизирующий слой 11. В способе изготовления ВПП используют в качестве подложки структуру n-n+ SiC с эпитаксиальным n-слоем, легированным азотом до уровня от 7
1015 до 1018см-3, а в качестве барьерообразующего металла используют Сr, многослойный выпрямляющий электрод формируют в едином технологическом цикле магнетронным распылением, после микропрофилирования на поверхности многослойного выпрямляющего электрода и n-слоя подложки наносят защитный диэлектрический слой, в окне которого формируют выходной контакт из благородного металла, а высокотемпературный отжиг производят после нанесения металла омического электрода и по окончании формирования выходного контакта. Техническим результатом изобретения является повышение надежности работы прибора в экспериментальных условиях температуры и радиации. 2 c. и 2 з.п. ф-лы, 2 табл., 3 ил.
Изобретение относится к микроэлектронике и может быть использовано в конструкции и технологии производства диодов Шотки. Особенно эффективно его использовать в микроэлектронных схемах, эксплуатируемых в экстремальных условиях.
Известен высокотемпературный полупроводниковый прибор (ВПП), содержащий монокристаллический алмазный слой, на котором сформирован гетероэпитаксиальный металлический слой, образующий с ним выпрямляющий контакт. Для достижения термостойкости выпрямляющего контакта постоянная кристаллической решетки используемого металла согласована с аналогичной характеристикой алмазного слоя (US 5212401, H 01 L 29/48, 1993). Его недостатком является высокая себестоимость и сложность изготовления, связанные с выращиванием и использованием алмаза. Известно также выполнение ВПП на основе кремния, в котором для обеспечения термостойкости выпрямляющий электрод сформирован из силицида тугоплавкого металла посредством отжига (US 5155559, H 01 L 29/48, 1992). Другим направлением развития данного вида техники является конструирование полупроводникового диода с барьером Шотки, под выпрямляющим электродом которого сформирован слой полупроводника, содержащего в микроколичестве азот. Это техническое решение апробировано на интегральной схеме, выполненной на кремнии (JP 5-27993, H 01 L 29/48, 1993). Однако данные приборы обладают дрейфующими вольт-амперными характеристиками при работе в условиях повышенной температуры и радиации. Наиболее близким к заявляемому является полупроводниковый прибор, содержащий полупроводниковую подложку, омический электрод и многослойный выпрямляющий электрод, расположенный на подложке и включающий барьерообразующий слой алюминия толщиной 10-200 нм, контактирующий с полупроводниковой подложкой с образованием барьера Шотки, промежуточный слой, имеющий толщину 20-200 нм, изготовленный из нитрида одного из тугоплавких металлов (Ti, Та, W, Hf, Mo, Zr, Nb, W, Cr) и выходной контакт для присоединения к внешней электрической цепи, выполненный из алюминия (JP 3-76030, H 01 L 29/46, 21/28, 21/3205, 29/48, 1991). Однако данная конструкция обладает низкой надежностью работы при высоких температурах и, особенно, при радиационном воздействии потоком быстрых нейтронов с флюенсом более 1015 нейтр./см2. Для изготовления ВПП известным способом на поверхности кремниевой подложки последовательно формируют внутреннюю пленку оксида кремния и внешнюю пленку нитрида кремния, далее во внешней пленке вскрывают первое окно, которое вместе с прилегающей поверхностью закрывают оксидом кремния, после чего концентрично первому окну вскрывают второе окно с диаметром, меньшим, чем диаметр первого окна, и последовательно формируют в нем двухслойный контакт Шотки (JP 5-41026, H 01 L 29/48, 21/28, 1993). Наиболее близким к заявляемому является способ изготовления ВПП, предусматривающий формирование на полупроводниковой подложке омического электрода и многослойного выпрямляющего электрода последовательным нанесением слоев барьерообразующего, тугоплавкого и благородного металлов, высокотемпературный отжиг и микропрофилирование целевого изделия. Барьерообразующий слой наносят из сплава W/Ti и непосредственно после этого осуществляют высокотемпературный отжиг при 400-900oC в атмосфере газовой смеси NH3/N2, формируя таким образом тугоплавкий нитридный слой на поверхности барьерообразующего слоя W/Ti. Затем на нитридную пленку наносят слой благородного металла, в качестве которого используют золото (JP 3-61346, H 01 L 29/48, 21/285, 1991). Однако известные способы не позволяют изготовить целевое изделие, надежно работающее в условиях воздействия высоких температуры и радиации. Кроме того, эти способы сложны по причине многостадийности. Технической задачей разработки предлагаемых устройства и способа его изготовления является повышение надежности работы целевого изделия в экстремальных условиях температуры и радиации. Многочисленными исследованиями установлено, что причина ненадежной работы полупроводниковых приборов с барьером Шотки в данных условиях заключается в ускоренной деградации омического и выпрямляющего электродов, в связи с чем задача обеспечения надежной работы получаемых приборов продолжает оставаться актуальной [см. , например: Растегаева М.Г. Омические контакты металл-карбид кремния: Автореф. дисс. к.т.н.-СПб: ФТИ, 1999.-16 с.; Афанасьев А.В. Термически- и радиационно-стойкие контакты "металл - карбид кремния" для приборов экстремальной электроники: Автореф. дисс. к.т.н. - СПб.: СПбГЭТУ (ЛЭТИ), 1999.-16 с.]. Решение указанной задачи заключается в том, что в конструкцию ВПП, содержащего полупроводниковую подложку, омический электрод и многослойный выпрямляющий электрод, расположенный на подложке и включающий барьерообразующий слой, связанный с полупроводниковой подложкой с образованием барьера Шотки, промежуточный слой из материала на основе тугоплавкого металла и выходной контакт для присоединения к внешней электрической цепи, внесены следующие изменения: 1) барьерообразующий слой выпрямляющего электрода изготовлен из хрома; 2) барьерообразующий слой связан с полупроводниковой подложкой с образованием переходной зоны из карбида хрома; 3) полупроводниковая подложка выполнена из карбида кремния +-типа проводимости с гомоэпитаксиальным n-слоем, легированным азотом до уровня от 7

5) проведение высокотемпературного отжига в две стадии: после нанесения металла омического электрода и по окончании формирования выходного контакта. Новизна и изобретательский уровень нового способа вытекают из его направленности на реализацию нового принципа действия диффузионных барьеров, препятствующих деградации электродной системы. Кроме того, в отличие от известных способов изготовления диодов Шотки с многослойным выпрямляющим электродом, в новом способе предусмотрена одностадийность нанесения электродных слоев за счет использования магнетронного распыления. Принципиально также проведение отжига, поскольку в известном способе одностадийный отжиг имеет назначением образование нитридов, выполняющих функцию промежуточного слоя, а именно диффузионного барьера, препятствующего взаимной диффузии атомов металлов барьерообразующего слоя и выходного контакта. В новом способе первая стадия отжига имеет назначением формирование омического контакта, что общеизвестно [см., например: Thermally stable ohmic contacts on n-type 6H- and 4H-SiC based on silicide and carbide./ S.Liu, K. Reinhardt, C. Severt. // Silicon Carbide and Related Mat. Proc.Conf. Kyoto. Japan. 1995. Ser. N 142. - P.589-592; Растегаева М.Г. Указанная работа], а вторая стадия отжига имеет новое назначение - формирование переходной зоны карбида хрома, препятствующей деградации барьера Шотки в экстремальных условиях. В прототипном же способе отжиг производят для формирования промежуточного слоя выпрямляющего электрода. На фиг. 1 приведена схема ВПП; на фиг. 2 и 3 приведены вольт-амперные характеристики целевого изделия при комнатной и высоких температурах. В табл. 1 и 2 приведены технические характеристики ВПП к примерам 1 и 2 соответственно. ВПП (фиг. 1) содержит полупроводниковую подложку 1, омический электрод 2 и многослойный выпрямляющий электрод 3, расположенный на подложке и включающий барьерообразующий слой 4, связанный с полупроводниковой подложкой 1 с образованием барьера Шотки, промежуточный слой 5, выполненный из вольфрама, и платиновый внешний слой 6 с выходным контактом 7, также выполненным из платины. Барьерообразующий сдой 4 выпрямляющего электрода 3 изготовлен из хрома и связан с полупроводниковой подложкой 1 с образованием переходной зоны 8 из карбида хрома. Полупроводниковая подложка 1 выполнена из карбида кремния и включает слой 9 n+-типа проводимости и гомоэпитаксиальный n-слой 10, легированный азотом, расположенный по месту формирования барьера Шотки. На полупроводниковой подложке 1 сформирован защитный слой 11 из диоксида кремния с возможностью герметизации боковых поверхностей выпрямляющего электрода 3. ВПП работает как токовый ключ в зависимости от полярности напряжения между омическим электродом 2 и выходным контактом 7. При подаче на ВПП напряжения с отрицательной полярностью на омическом электроде 2 ток проходит через ВПП, поскольку уменьшен потенциальный барьер протекания тока через контакт Шотки, образованный между n-слоем 10 карбида кремния и зоной 8 карбида хрома. При обратной полярности потенциальный барьер контакта Шотки возрастает, запирая электрическую цепь. В экстремальных условиях промежуточный слой 5 препятствует взаимной диффузии атомов слоев 4 и 6 выпрямляющего электрода 3. Зависимость технических характеристик ВПП конструктивного исполнения и технологических режимов изготовления иллюстрируется следующими примерами. Пример 1. На полупроводниковой подложке 1, выполненной из карбида кремния и имеющей структуру n-n+, где n-слой 10 легирован азотом, формируют омический электрод 2. С этой целью на поверхность 9 (n+) подложки 1 наносят слой 2 никеля толщиной 0,3





















Формула изобретения



РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4