Изобретение относится к энергомашиностроению и касается технологии работы газогидрореактивных движителей судов, выработки электроэнергии и технологии работы устройств для откачки забортной воды в аварийных ситуациях. Способ состоит в подаче в рабочий цилиндр забортной воды и горячего газа. Рабочий цилиндр является профилированным и заканчивается соплом. Вода поступает в цилиндр, когда в нем находится разреженная газоводяная смесь. Вода движется в сторону меньшего давления к соплу, освобождая за собой свободный объем рабочего цилиндра. В этот объем поступает горячий газ. Горячий газ расширяется, одновременно сжимая и выталкивая предыдущую газоводяную смесь через сопло, создавая реактивную тягу. Затем горячий газ смешивается с оставшейся забортной водой, образуя газоводяную смесь, охлаждаясь и создавая необходимое разрежение для поступления в рабочий цилиндр забортной воды и горячего газа. Газ может предварительно адиабатно расширяться в силовой турбине. Забортная вода и горячий газ могут поступать в цилиндр поочередно через вращающийся золотник. Забортная вода может через гидравлический пульсатор поступать в рабочий цилиндр и захватывать горячий газ. Технический результат реализации изобретения заключается в повышении эффективного КПД судовой энергетической установки. 4 з.п. ф-лы, 1 ил.
Изобретение относится к энергомашиностроению и может быть использовано для привода в движение речных и морских судов, выработки электроэнергии, а в аварийных случаях для откачки забортной воды из корпуса судна.
Известен газоводореактивный движитель (Муслин E. Машины 20 века.- M.: Машиностроение, 1971, с. 206), который представляет собой обычный турбореактивный двигатель с газовой турбиной, реактивная струя которого по специально спрофилированному каналу направляется под днище судна. Смешиваясь с водой, струя газа увлекает образовавшуюся эмульсию и отбрасывает ее назад, образуя реактивную тягу.
Недостатком данного реактивного двигателя является низкий эффективный КПД порядка 10-14% (так как КПД движителя составляет примерно 0,5, а КПД собственно турбореактивного двигателя-газотурбинного двигателя без регенерации - 20-28% (см. Цкович A.M. Основы теплотехники.- М.: Высшая школа, 1975, с. 321), т.е. эффективный КПД будет равен (20-28%)

0,5 = 10-14%.
Известна парогaзовая установка подводного аппарата (Алексеев Г.Н. Общая теплотехника.- М.: Высшая школа, 1980, с. 353, 471), в которой в парогазовом котле при давлении 25-30 бар сгорает смесь керосина с воздухом, а в зону за фронтом пламени через специальные трубки-форсунки подается вода. Образовавшийся парогаз поступает через золотниковое распределение в поршневую расширительную машину двойного действия, которая вращает гребной винт.
Недостатком данной установки является низкий эффективный КПД порядка 10-15% (там же, с. 471), так как основная часть энергии горячего газа идет на превращение воды в пар. Кроме того, из-за высокого давления и температуры парогаза необходимо большое количество вспомогательного оборудования (компрессоры, топливные насосы, золотниковые распределители поршневой расширительной машины), что также увеличивает потери парогаза.
Цель изобретения - повышение эффективности КПД судовой энергетической установки.
Поставленная цель достигается тем, что в профилированный рабочий цилиндр, заканчивающийся соплом, через специальные распределительные устройства поступают горячий газ и забортная вода, а из сопла вылетает газоводяная смесь, создавая реактивную тягу.
По одному из вариантов горячий газ поступает в рабочий цилиндр, например из камеры сгорания, по другому варианту горячий газ поступает в силовую турбину, а затем в рабочий цилиндр.
В зависимости от конкретного исполнения забортная вода и горячий газ могут подаваться в рабочий цилиндр поочередно через вращающийся золотник или через гидравлический пульсатор, или непрерывно через эжектор, причем эжектирующей средой является забортная вода.
Сущность изобретения состоит в том, что забортная вода поступает в профилированный рабочий цилиндр, заканчивающийся соплом, в котором находится разряженная газоводяная смесь, движется в сторону меньшего давления к соплу, освобождая за собой свободный объем рабочего цилиндра, куда поступает горячий газ, который расширяется, одновременно сжимая и выталкивая предыдущую газоводяную смесь через сопло, создавая реактивную тягу, затем горячий газ смешивается с оставшейся забортной водой, образуя газоводяную смесь, охлаждается, создавая разряжение, необходимое для поступления в рабочий цилиндр забортной воды и горячего газа.
Параметры рабочего процесса судовой энергетической установки (мощность, расход топлива и т.д.) определяются соотношением горячего газа и забортной воды в рабочем цилиндре, а также профилем рабочего цилиндра и его размерами.
На чертеже изображен термодинамический цикл работы судовой энергетической установки по предлагаемому способу.
Процесс 1-2 - подвод тепла при постоянном давлении (это возможно при сгорании топлива в камере сгорания).
Процесс 2-2'-3 - расширение горячего газа, например, адиабатное после камеры сгорания. Возможны варианты: сразу в рабочем цилиндре или предварительно в силовой турбине, а затем в рабочем цилиндре.
Процесс 3-4 - охлаждение газа в рабочем цилиндре, например изобарное.
Процесс 4-1 - сжатие газа до атмосферного давления с отводом тепла, например изотермический.
Температура окружающей среды: T
1 = 300 K (27
oC) Давление окружающей среды: P
1 = 1 бар Максимальная температура цикла: T
2 = 1500 K (1227
oC) Давление, например, в камере сгорания постоянно и равно атмосферному: P
2=P
1 = 1 бар Температура конца адиабатного расширения: T
3 = 600 K (327
oC)
Давление конца адиабатного расширения:
P
3 = 0,04 бар
(из уравнения адиабаты при K =1,4" - показатели адиабаты)
Температура охлаждения газа равна (теоретически) температуре окружающей среды:
T
4 = T
1 = 300 K (27
oC)
Давление охлаждения газа:
P
3 = P
4 = 0,04 бар
(из уравнения изобарного процесса)
Термодинамический КПД цикла

,
где q
1 = C
p (t
2-t
1) - кол-во подведенного тепла;
C
р = 1,13 кДпс/кг
oC - теплоемкость при постоянном давлении в диапазоне 30
oC

t

1200
oC;
q
2 = C
p (t
3 - t
4) + RT
4ln

P
1/P
4 - количество отведенного тепла;

- газовая постоянная воздуха, тогда

или 54%.
Для оценки эффективного КПД учтем тепловые гидравлические потери, например, в камере сгорания
к,с= 0,95-0,98 , принимаем 0,96 (см. Нигматуллин И.Н. Тепловые двигатели.- М.: Высшая школа, 1974, с. 197).
КПД движителя можно принять по аналогии с гидрореактивным двигателем
ч.д= 0,6-0,7 , берем
ч.д= 0,65 (Алексеев Г.Н. Общая теплотехника.- M.: Высшая школа, 1980, с. 532).
КПД газовой турбины
г.т= 0,65-0,8 , берем
г.т= 0,75 (Алексеев Г.Н. Общая теплотехника.- М.: Высшая школа, 1980, с. 452).
Тогда эффективный КПД судовой энергетической установки
а) по п. 1
1уст=
к.с
г.д
t= 0,96

0,65

0,54=0,34 или 34%
б) по п. 2
2уст=
к.с
г.д
г.т
t= 0,96

0,65

0,54

0,75 = 0,25 или 25%
Значение эффективного КПД 34 и 25% в обоих случаях больше, чем у прототипа (10-15%).
Использование предлагаемого способа работы судовой энергетической установки по сравнению с существующими обеспечивает следующие преимущества:
1) более высокий эффективный КПД, что позволяет снизить эксплуатационные расходы (топливо, масла и т.д.), увеличить радиус действия судна;
2) более простую конструкцию (нет необходимости в компрессорах, топливных насосах, поршневых расширительных машинах), а следовательно, более низкую себестоимость;
3) большую жизнестойкость судна (так как установка работает при атмосферном давлении, в случае аварийной ситуации она может работать в режиме откачивающего насоса и генератора для выработки электроэнергии).
Формула изобретения
1. Способ работы судовой энергетической установки путем подачи забортной воды и горячего газа в рабочий цилиндр, отличающийся тем, что с целью повышения эффективного к.п.д. забортная вода поступает в профилированный рабочий цилиндр, заканчивающийся соплом, в котором находится разреженная газоводяная смесь, движется в сторону меньшего давления к соплу, освобождая за собой свободный объем рабочего цилиндра, куда поступает горячий газ, который расширяется, одновременно сжимая и выталкивая предыдущую газоводяную смесь через сопло, создавая реактивную тягу, затем горячий газ смешивается с оставшейся забортной водой, образуя газоводяную смесь, охлаждается, создавая необходимое разрежение для поступления в рабочий цилиндр забортной воды и горячего газа.
2. Способ по п.1, отличающийся тем, что горячий газ предварительно адиабатно расширяется в силовой турбине, а затем поступает в рабочий цилиндр.
3. Способ по п. 1, отличающийся тем, что забортная вода и горячий газ поступают в рабочий цилиндр поочередно через вращающийся золотник.
4. Способ по п.1, отличающийся тем, что забортная вода поступает в рабочий цилиндр через гидравлический пульсатор и захватывает горячий газ.
5. Способ по п.1, отличающийся тем, что забортная вода и горячий газ поступают в рабочий цилиндр непрерывно через эжектор, причем эжектирующей средой является забортная вода.
РИСУНКИ
Рисунок 1