Способ испарения и конденсации токопроводящих материалов
Изобретение может быть использовано в авиационном и энергетическом газотурбиностроении. Способ включает вакуумно-дуговое испарение токопроводящего материала при наложении на поверхность испарения магнитного поля и при радиационном охлаждении испаряемого материала при температуре его нагрева на уровне от 0,3 температуры его плавления до температуры его разупрочнения путем регулирования температуры токопроводящего материала изменением тока вакуумной дуги и площади поверхности излучения испаряемого материала, генерацию плазмы токопроводящего материала вакуумной дугой и конденсацию этой плазмы с образованием покрытия на подложке. Изобретение позволяет повысить точность переноса состава многокомпонентных материалов при их конденсации при одновременном увеличении производительности. 1 табл.
Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом газотурбиностроении, а также машиностроении для испарения многокомпонентных токопроводящих материалов с целью нанесения защитных покрытий преимущественно на лопатки турбин.
В промышленности широко известен способ испарения поверхности металлических материалов вакуумной дугой, горящей в парах материала с образованием плазмы этого материала, при наложении на поверхность магнитного поля, описанный, например, в статье [1]. Способ в основном используется для испарения токопроводящих материалов и нанесения упрочняющих покрытий на режущий инструмент и детали машин из плазмы испаряемого материала. Недостатками известного способа является низкая его производительность, что ограничивает возможность получения толстых (свыше 40-50 мкм) покрытий и низкая точность переноса состава многокомпонентных сплавов при конденсации плазмы испаряемого материала из-за больших начальных энергий частиц в плазме вакуумной дуги (~ 100 эВ), приводящих к выборочному ионному травлению (катодному распылению) осаждающегося конденсата. Наиболее близким по технической сущности к изобретению является способ, описанный в заявке [2], включающий размещение в зону испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке. Недостатком известного способа является несоответствие состава покрытия составу испаряемого токопроводящего материала, то есть низкая точность переноса состава многокомпонентных сплавов при конденсации плазмы испаряемого материала из-за больших начальных энергий частиц в плазме вакуумной дуги (~ 10 эВ) и относительно низкая его производительность. Технической задачей изобретения является повышение качества покрытия за счет увеличения точности переноса состава многокомпонентных токопроводящих материалов при их конденсации при одновременном увеличении производительности. Предложен способ испарения и конденсации токопроводящих материалов, включающий размещение в зоне испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке, тангенциально магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке, причем процесс испарения ведут при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводящей к потере им геометрической формы, а температуру нагрева токопроводящего материала регулируют изменением тока вакуумной дуги и площади поверхности излучения токопроводящего материала. Испарение при температуре нагрева поверхности испарения токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводит к увеличению доли капельной фазы в продуктах испарения катодного пятна вакуумной дуги от 1 до 60% и более и в целом к росту скорости испарения (эрозии). При этом заметный рост капельной фазы и скорости испарения начинается при средней температуре нагрева токопроводящего материала, равной ~ 0,3 температуры его плавления. В свою очередь рост содержания капельной фазы в продуктах испарения материала покрытия приводит к формированию конденсата, содержащего 50-60% и более капельной фазы. Элементный состав конденсата, имеющего большое содержание капельной фазы ближе к составу испаряемого материала покрытия. Конденсат представляет собой матрицу, сформированную за счет конденсации ионов и нейтралов из плазмы испаряемого токопроводящего материала, содержащую капельную фазу. Причем элементный состав матрицы значительно отличается от состава испаряемого материала покрытия из-за больших энергий ионов плазмы вакуумной дуги, приводящих к выборочному ионному травлению конденсата. Таким образом ведение процесса испарения при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения позволяет повысить точность переноса состава многокомпонентных сплавов при их конденсации, а также обеспечивает рост скорости испарения. При этом ток вакуумной дуги и площадь поверхности излучения токопроводящего материала выбирают таким образом, чтобы обеспечить требуемую температуру нагрева токопроводящего материала. Сущность изобретения поясняется на примерах. Пример 1. Для испарения и конденсации токопроводящего материала на подложке, например на лопатке ротора турбины, проводят предварительную ее подготовку (очистку), после этого вводят в зону испарения токопроводящий материал (сплав на основе никеля следующего состава, мас.%: хром 20,2; алюминий 13,3; иттрий 0,36; никель остальное с температурой плавления tпл. ~ 1440oC) и подложку, создают в зоне испарения вакуум при давлении






Формула изобретения
Способ испарения и конденсации токопроводящих материалов, включающий размещение в зоне испарения токопроводящего материала и подложки, создание вакуума в зоне испарения, подачу отрицательного потенциала на токопроводящий материал и отдельно на подложку, наложение на поверхность испарения токопроводящего материала, обращенную к подложке, магнитного поля, возбуждение на поверхности испарения токопроводящего материала вакуумной дуги, горящей в парах этого материала с образованием плазмы токопроводящего материала при сохранении его в твердом состоянии, очистку поверхности подложки ионной бомбардировкой и конденсацию этой плазмы с образованием покрытия на подложке, отличающийся тем, что процесс испарения ведут при радиационном охлаждении токопроводящего материала и температуре нагрева токопроводящего материала на уровне от 0,3 температуры его плавления до температуры его разупрочнения, приводящей к потере им геометрической формы, причем температуру нагрева токопроводящего материала регулируют изменением тока вакуумной дуги и площади поверхности излучения токопроводящего материала.РИСУНКИ
Рисунок 1