Изобретение относится к металлургии, в частности к созданию высокопрочной корозионно-стойкой стали аустенитно-мартенситного класса, предназначенной для изготовления высоконагруженных крупногабаритных деталей машин, таких как шасси, рамы, лонжероны, узлы поворота, силовой крепеж и др., работающих при температуре от -70 до +300°С. Заявленная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,18-0,21; хром 13-14; никель 4-4,5; молибден 2,3-2,8; кремний 1,7-2,5; кобальт 3,5-4,5; азот 0,06-0,09; марганец 0,1-1,0; иттрий 0,001-0,05; церий 0,001-0,05; лантан 0,001-0,05; железо остальное. При этом сумма Y+Ce+La
0,l %, а соотношение компонентов, определяющих фазовый состав стали, характеризуется следующими формулами: Км=Cr+Mo+l,5Ni+30(C+N)+0,7(Mn+Si)=30-35; Кф=Cr+Mo+2Si-{l,5Ni+30(C+N)0,7Mn}=5-5,5, где Км - эквивалент мартенситообразования, а Кф - эквивалент ферритообразования. Техническим результатом изобретения является повышение прочности, пластичности, ударной вязкости и сопротивления коррозионному растрескиванию. 1 з.п.ф-лы, 2 табл.
Изобретение относится к области металлургии, в частности к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, обладающих супервысокой прочностью, хорошей свариваемостью и высоким сопротивлением коррозионному растрескиванию. Сталь предназначена для изготовления высоконагруженных крупногабаритных деталей машин: шасси, рамы, лонжероны, узлы поворота, силовой крепеж и др., работающих при t = -70 - +300oC во всеклиматических условиях, в том числе в морской среде.
Известны коррозионно-стойкие стали для силовых деталей машин, в том числе самолетных конструкций: 17-4PH (США) (New developments in high strength stainless steels, DMIC Report 223, January 3, 1966 г.) и сталь 13X11H6M2C (а.с. 647355, БИ N 6 от 15.02.79 г.).
Сталь 17-4PH имеет следующий химический состав, мас.%: C - 0,07 Cr - 15,5-17,5 Ni - 3-5 Nb - 0,15-0,45 Cu - 3-5 Si - 1,0
Fe - Остальное
После закалки с 1040
oC и отпуска при 470
oC 1 час сталь имеет следующие механические свойства:
в = 133 кгс/мм
2,
0,2 = 120 кгс/мм
2,

= 10,5%,

= 35%, a
v = 2 кгсм/см
2.
Сталь имеет достаточно высокое сопротивление коррозионному растрескиванию, но недостаточный уровень прочностных характеристик и пониженные значения пластичности (

и

) и вязкости (a
v).
Сталь 13Х11Н6М2С имеет следующий химический состав, мас.%:
C - 0,10-0,16
Cr - 10,5-12,5
Ni - 5,6-7
Mo - 1,5-3
Si - 1,3-2,7
N - 0,006-0,05
Mn - 0,5
Fe - Остальное
Сталь после закалки и отпуска обладает следующими механическими свойствами:
в = 154-158 кгс/мм
2,
0,2 = 131-135 кгс/мм
2,

= 12-13%,

= 42-55%, a
н = 6-7,5 кгсм/см
2.
Указанная сталь имеет недостаточный уровень прочности и из-за пониженного содержания хрома недостаточную коррозионную стойкость, что затрудняет ее применение для деталей и узлов, работающих в морской среде. Кроме того, сталь не сбалансирована по фазовому составу: при содержании в стали ферритообразующих элементов (Cr, Si, Mo) на верхнем пределе, а аустенитообразующих (C, Ni, N) - на нижнем, в стали может быть до 13% дельта-феррита, который резко снижает пластичность и вязкость, особенно в поперечном волокну направлении. Кроме того, при неблагоприятном сочетании легирующих элементов сталь может быть либо чисто аустенитной, либо мартенситной, что приводит к нестабильности механических свойств.
Известна коррозионно-стойкая сталь аустенитно-мартенситного класса 18Х14Н4АМ3 (а.с. N 829716, БИ 18 от 15.05.81 г.), принятая авторами за прототип, следующего химического состава, мас.%:
C - 0,17-0,20
Cr - 13-14,5
Ni - 4-4,5
Mo - 2,3-2,8
N - 0,05-0,10
Si - 0,1-0,7
Mn - 0,1-1,0
Fe - Остальное
Эта сталь имеет высокий комплекс механических и коррозионных свойств. После закалки, обработки холодом и отпуска сталь имеет следующие свойства:
в = 164-176 кгс/мм
2,
0,2 = 135-140 кгс/мм
2,
5 = 15,5-16,5%,

= 50-55%, a
н = 10-12 кгсм/см
2.
Недостатками стали является недостаточная прочность для таких узлов, как шасси самолета, а также крупное зерно после закалки (~2 балла), что при жестких условиях испытания приводит к получению пониженных характеристик (ударная вязкость образцов с трещиной - a
ту, коэффициент интенсивности напряжений K
1с).
Технической задачей настоящего изобретения является создание супервысокопрочной коррозионно-стойкой стали (
в = 180 кгс/мм
2), обладающей стабильно высокими пластичностью и вязкостью, а также высокими характеристиками надежности - коэффициентом интенсивности напряжения K
1с, сопротивлением коррозионному растрескиванию.
Эта задача достигается за счет дополнительного легирования кобальтом, иттрием, церием и лантаном при следующем соотношении компонентов, мас.%:
C - 0,18-0,21
Cr - 13-14
Ni - 4-4,5
Mo - 2,3-2,8
Si - 1,7-2,5
Co - 3,5-4,5
N - 0,06-0,09
Mn - 0,1-1,0
Y - 0,001-0,05
Ce - 0,001-0,05
La - 0,001-0,05
Fe - Остальное
При этом сумма Y+Ce+La

0,1, т. к. большее содержание может повысить склонность к горячим трещинам.
Соотношение аустенито- и ферритообразующих элементов, определяющих фазовый состав в стали, должно определяться следующими равенствами:
K
м = Cr+Mo+1,5Ni+30(C+N)+0,7(Mn+Si) = 30-35,
K
ф = Cr+Mo+2Si-{1,5Ni+30(C+N)+0,7Mn} = 5-5,5,
где K
м - эквивалент мартенситообразования,
K
ф - эквивалент ферритообразования.
Подобранное соотношение легирующих элементов (K
м и K
ф) позволяет получить стабильную структуру феррита и заданное соотношение мартенсита и аустенита (80-85% мартенсита, 15-20% остаточного аустенита) и обеспечить требуемый высокий уровень механических и коррозионных свойств.
Легирование стали повышенным содержанием Si и введенным Co позволяет получить высокий предел прочности
в = 180 кгс/мм
2.
Кроме того, повышенное содержание кремния обеспечивает высокую коррозионную стойкость в том числе сопротивление коррозионному растрескиванию.
Легирование церием и лантаном уменьшает содержание примесей на границах зерен, легирование иттрием позволяет получить достаточно мелкое зерно (~4 балла), что обеспечивает высокие и стабильные характеристики пластичности и вязкости.
Пример осуществления.
В лабораторных условиях в открытой печи с последующим электрошлаковым переплавом были произведены плавки предложенного химического состава (табл. 1).
Новая сталь после термообработки по оптимальному режиму: закалка + обработка холодом и отпуск обладает следующими механическими свойствами (табл. 2):
предел прочности
в = 180-190 кгс/мм
2 предел текучести
0,2 = 142-150 кгс/мм
2 относительное удлинение
5 = 18-20%
относительное сужение

= 52-60%
ударная вязкость a
v = 6-10 кгсм/см
2 (r
н = 0,25 мм)
ударная вязкость с трещиной a
ту = 3,5-5 кгсм/см
2 коэффициент интенсивности напряжения:
K
1с+20 = 450-480 кгс/мм
3/2 K
1с-50 = 290-310 кгс/мм
3/2 Сопротивление коррозионному растрескиванию - при приложенном напряжении

= 0,8
0,2 сталь выдерживает более 6 месяцев без разрушения в камере соляного тумана 5% NaCl, t = 35
oC (КСТ-35).
Как видно из приведенных данных, при весьма высоких значениях прочности
в = 180-190 кгс/мм
2 сталь имеет высокие характеристики пластичности (

,

), вязкости (a
н, a
v, a
ту), высокий коэффициент интенсивности напряжения (K
1с), высокое сопротивление коррозионному растрескиванию в камере соляного тумана (КСТ-35).
По сравнению с известной сталью (прототип) новая сталь обладает более высокими механическими свойствами: предел прочности (
в) выше на 10-20 кгс/мм
2, значение ударной вязкости (a
v и a
ту) выше в 1,5 раза, значения коэффициента интенсивности напряжений (K
1с) выше на 10-20%.
Таким образом, применение предложенной стали позволит снизить вес тяжелонагруженных деталей, эксплуатирующихся при t = -70 - +300
oC во всеклиматических условиях, и обеспечить стабильные и высокие характеристики надежности самолетов нового поколения.
Эта сталь может быть применена для высоконагруженных силовых конструкций (детали шасси, рамы, лонжероны, узлы поворота и др.), эксплуатирующихся во всеклиматических условиях и гидросамолете.
Формула изобретения
1. Высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса, содержащая углерод, хром, никель, молибден, кремний, азот, марганец, железо, отличающаяся тем, что сталь дополнительно содержит кобальт, иттрий, церий и лантан при следующем соотношении компонентов, мас.%:
Углерод - 0,18 - 0,21
Хром - 13 - 14
Никель - 4 - 4,5
Молибден - 2,3 - 2,8
Кремний - 1,7 - 2,5
Кобальт - 3,5 - 4,5
Азот - 0,06 - 0,09
Марганец - 0,1 - 1,0
Иттрий - 0,001 - 0,05
Церий - 0,001 - 0,05
Лантан - 0,001 - 0,05
Железо - Остальное
при этом сумма Y+Ce+La

0,1%.
2. Высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса по п.1, отличающаяся тем, что соотношение компонентов, определяющих фазовый состав стали, характеризуется следующими формулами:
Км = Cr+Mo+1,5Ni+30(C+N)+0,7(Mn+Si) = 30-35,
Кф = Cr+Mo+2Si-{1,5Ni+30(C+N)+0,7Mn} = 5-5,5,
где Км - эквивалент мартенситообразования;
Кф - эквивалент ферритообразования.
РИСУНКИ
Рисунок 1