Использование: изобретение относится к конструкциям нажимных устройств клетей тонколистовых станов горячей и холодной прокатки. Сущность: в нажимном устройстве клети тонколистового стана, включающем расположенные между верхней поперечиной станины и подушкой верхнего опорного валка механическую пару гайка - винт, пяту с подпятником, датчик усилия прокатки, гидравлическую пару плунжер - цилиндр, контактная поверхность пяты с подпятником изготовлена плоской, между подпятником и плунжером вместо месдозы установлен упорный подшипник качения, а в гидравлическую систему пары цилиндр - плунжер добавлены датчики давления масла. Изобретение обеспечивает повышение работоспособности и долговечности нажимного устройства, а также точности измерения усилия прокатки, за счет снижения износа цилиндра, плунжера, уплотнений, пяты, подпятника и отсутствия тензометрической месдозы для измерения усилия прокатки. 5 ил.
Изобретение относится к прокатному производству, а точнее к конструкциям нажимных устройств клетей тонколистовых станов горячей и холодной прокатки.
Известно нажимное устройство прокатной клети, состоящее из гайки, закрепленной в верхней поперечине станины, нажимного винта с электроприводом, сферической пяты с подпятником, тензометрической месдозой, установленных между винтом и подушкой опорного валка, и гидравлических цилиндров между подушками (см. Королев А.А. "Конструкция и расчет машин и механизмов прокатных станов". М.: Металлургия, 2-е изд., 1985, с. 142-143).
Недостатками данного устройства являются сложность перевалки опорных валков из-за необходимости предварительного отключения гидравлической системы цилиндров, интенсивный и неравномерный износ контактирующих сферических поверхностей на пяте и подпятнике при вращении нажимного винта, а также низкая точность измерения усилия прокатки, из-за неравномерного контакта тензодатчиков месдозы с подпятником и подушкой при перекосе устройства в вертикальной плоскости или воздействия горизонтальных усилий.
Известно нажимное устройство прокатной клети, содержащее нажимной винт с гайкой, смонтированной в верхней поперечине станины клети, сферическую пяту на торце нажимного винта с сопрягаемым с ней подпятником, который опирается на тензометрическую месдозу внутри плунжера и гидравлический цилиндр, установленный на подушке верхнего опорного валка (см. Анализ работы системы нажимной винт - гидравлическое нажимное устройство - подушка опорного валка чистовых клетей стана 2000 АО "НЛМК" /Е.А.Варшавский, В.А.Третьяков, Н.Н. Стрельников //Проблемы развития металлургии Урала на рубеже XXI века: Сб. научн. тр. Т. 1. - Магнитогорск: МГМА, 1996. С. 172-178. Копия прилагается).
Недостатком известного устройства является возможность появления перекоса плунжера относительно корпуса цилиндра при наличии радиальных зазоров подушка опорного валка - станина, траверса плунжера - станина или осевых зазоров в механизме осевой фиксации верхнего опорного валка. Например, в последнем случае из-за целого комплекса причин (наличие перекоса осей рабочих и опорных валков в горизонтальной плоскости, несимметрии по ширине профиля полосы или профилировки по длине валка, температуры по ширине полосы и т.п.) на опорные валки действуют осевые силы Q
ос (фиг. 1), смещающие их вместе с подушками в осевом направлении на величину

. При этом смещении корпус гидравлического цилиндра перемещается вместе с подушкой, передавая через силу трения
к осевую силу Q
ос на плунжер - месдозу - подпятник (на фиг. 1 плунжер изображен совместно со сферическим подпятником и месдозой как одно целое тело). Эта сила Q
ос = Q
2 через деформацию уплотнений цилиндра создает момент вращения М
п = Q
ос
a и поворачивает плунжер - подпятник вокруг центра сферы пяты и подпятника, где a - расстояние от точки приложения силы Q
2 до центра сферы пяты. Из условия равновесия плунжера - подпятника относительно центра сферы пяты Q
ос
a-f
п
N
п
R
п = 0 следует, что проскальзывание (перемещение) подпятника относительно пяты может произойти, если осевая сила Q
ос 
N
п
f
п
R
п/a, где N
п - результирующая сил нормального давления на контакте пята - подпятник, f
п - коэффициент трения на том же контакте, R
п - радиус сферы пяты и подпятника. Проскальзывание происходит именно в контакте пята - подпятник, а не в контакте подушка опорного валка - цилиндр, т.к. в первом контакте предельная сила трения F
п (коэффициент трения со смазкой f
п = 0,1) меньше, чем предельная сила трения F
к, во втором контакте (коэффициент сухого трения f
к = 0,3). В контакте пята - подпятник низкий коэффициент трения создается принудительно постоянной смазкой контакта, так как он подвергается трению верчения при вращении нажимного винта. При воздействии осевой силой, например от перекоса осей рабочих и опорных валков в горизонтальной плоскости, достаточной для начала скольжения элементов нажимного устройства (для условий стана 2000 ОАО "НЛМК" осевая сила Q
ос должна быть больше 15% от усилия прокатки), и осевом перемещении подушки опорного валка на величину

, величина поворота плунжера - подпятника относительно корпуса цилиндра будет равна



/R
n. Максимальная величина перемещения

, для условий чистовых клетей стана 2000 ОАО "НЛМК", лимитирована полем зазора в осевом фиксаторе подушки опорного валка - порядка 10 мм, тогда максимальный угол перекоса плунжера относительно корпуса гидроцилиндра может быть равен


10/1250=0,008 рад= 0,46
o, что больше критического угла
кр=0,0072 рад (0,43
o), установленного фирмой-изготовителем гидравлических цилиндров, и это приводит к преждевременному выходу из строя элементов гидравлической пары плунжер - цилиндр. Также повышенный перекос нажимного устройства приводит к неравномерному распределению по длине подушки толщины масляного слоя в подшипнике жидкостного трения опорного валка, что повышает температуру масла и отрицательно сказывается на долговечности баббитового вкладыша подшипника.
Кроме того, недостатками известного устройства также являются неравномерный износ в контакте пята - подпятник, на котором реализуется трение верчения при вращении нажимного винта (фиг. 1 и 1А) и низкая достоверность показаний тензометрической месдозы при перекосе нажимного устройства, несоосности результирующей сил на подушке опорного валка к нормали центральной точки базовой плоскости месдозы, а также наличие моментов и горизонтальных сил (Q
2), действующих на месдозу.
В заявляемом устройстве решается задача повышения работоспособности и долговечности нажимного устройства, а также точности измерения усилия прокатки. Данная задача решается за счет того, что в нажимном устройстве клети тонколистового стана, включающем расположенные между верхней поперечиной станины и подушкой верхнего опорного валка механическую пару гайка - винт, пяту с подпятником, датчик усилия прокатки, гидравлическую пару плунжер - цилиндр, контактную поверхность пяты с подпятником изготавливают плоской, между подпятником и плунжером вместо датчика усилия устанавливается упорный подшипник качения, а в гидравлическую систему пары цилиндр - плунжер дополнительно устанавливаются датчики давления масла.
На фиг. 2 показана конструкция предлагаемого устройства; на фиг. 3 - работа устройства при воздействии на него осевых усилий опорных валков; на фиг. 4 - при воздействии горизонтальных составляющих радиальных усилий опорных валков.
Нажимное устройство состоит из гайки 1, зафиксированной в верхней поперечине 2 станины клети, винта 3 с плоской пятой 4 на нижнем торце, опирающейся на плоский подпятник 5, который лежит на упорном подшипнике качения 6. Упорный подшипник установлен вместо тензометрической месдозы прототипа в плунжере 7 гидравлического цилиндра 8, контактирующего с подушкой 9 верхнего опорного валка 10. В гидравлической системе гидроцилиндра дополнительно установлены датчики давления 11 рабочей жидкости (масла).
Устройство работает следующим образом. При воздействии на нажимное устройство каких-либо децентрирующих усилий, например осевой силой Q
ос от опорного валка 10 (см. фиг. 3), осевое перемещение опорного валка вместе с подушками 9 возможно, если Q
ос 
F
к или Q
ос 
P
оп
f
к, где F
к - сила трения на контакте подушка опорного валка 9 - гидроцилиндр 8, f
к - коэффициент трения в этом же контакте, P
оп - усилие на подушке опорного валка (половина усилия прокатки). Так как f
к = 0,3, то перемещение произойдет, если осевое усилие больше 30% от усилия прокатки, чего практически не бывает (максимальные осевые усилия составляют 15-20% усилия прокатки). Такое же условие Q
ос 
0,3

P
оп должно быть выполнено для реализации какого-либо перемещения в контакте пята 4 - подпятник 5, так как в этом контакте необходимость наличия смазки по сравнению с прототипом отпала (трение верчения при вращении нажимного винта 3 происходит в контакте тел качения с кольцами упорного подшипника качения 6), то коэффициент трения также равен f
п = 0,3. Таким образом, осевые силы валков не могут вызвать относительное смещение элементов предлагаемого нажимного устройства.
Если при монтаже опорного валка (перевалка) вертикальная ось подушки не совпала с осью нажимного устройства на величину

(см. фиг. 3), то момент на гидравлическом цилиндре P
оп

от пары сил P
оп и P
ц не приведет к его значительному перекосу, так как цилиндр будет поддерживаться подушкой опорного валка.
Усилие прокатки, воздействующее на бочку опорного валка, вызывает прогиб его оси и соответствующий поворот подушек в горизонтальной плоскости. Возможность осуществления подушками опорного валка такого поворота - одна из основных причин изготовления сферического контакта пята - подпятник в известных конструкциях нажимных устройств. В предлагаемом устройстве (см. фиг. 3) поворот подушки опорного валка беспрепятственно осуществляется за счет некоторого перекоса плунжера относительно цилиндра с деформацией уплотнительных колец, но максимальный угол этого перекоса

при прогибе центральной точки бочки опорного валка клети стана 2000 на

= 1 мм (при максимально возможном усилии прокатки в 3000 тонн) составит лишь


2


/L = 2

1/2000 = 0,001 рад = 0,06
o, что намного меньше критического угла
кр = 0,0072 рад (0,43
o), установленного фирмой-изготовителем гидравлических цилиндров.
Максимальные горизонтальные радиальные силы действуют кратковременно на элементы нажимного устройства (см. фиг. 4) при захвате и выходе полосы из рабочих валков, когда происходят "просадка" (при захвате полосы) и "раскрутка" (при выбросе полосы) скорости рабочих валков
р и отличие линейных скоростей рабочего V
р=
р
R
р и опорного валка V
оп=
оп
R
оп наибольшее, где
ри
оп - скорости вращения рабочего и опорного валков, R
р и R
оп - радиусы бочек рабочего и опорного валков. При этом максимальная горизонтальная сила на опорном валке равна F
оп = P
оп
f
р-оп, где f
р-оп = 0,2 - коэффициент трения в контакте бочек рабочего и опорного валков (наличие в контакте смазки в виде воды и низкая шероховатость поверхностей бочек валков снижает величину коэффициента трения). Так как силы сопротивления относительным перемещениям элементов нажимного устройства F
к и F
п (равны 0,3

P
оп) больше F
оп = 0,2

P
оп, то горизонтальные смещения элементов нажимного устройства и опорных валков с подушками маловероятны.
Если по каким-либо причинам (попадание смазки на контактные поверхности нажимного устройства, некачественный монтаж при перевалке опорных валков и т. п. ) вертикальные оси нажимного устройства и подушки опорного валка оказались смещены относительно друг друга на величину S (см. фиг. 4), то на гидравлический цилиндр начнет действовать момент P
оп
S от пары сил P
оп и P
ц, разворачивая его вместе с подушкой относительно плунжера на угол

. Максимальная величина этого поворота (штриховой контур подушки на фиг. 4) ограничена углом

, при одновременном контакте подушки с обеими стойками станины клети. Максимально возможный угол поворота подушки

для клетей стана 2000 в поле максимальных зазоров подушки опорного валка и станины d = 4 мм на базе высоты подушки L
п = 1350 мм, равен:

= d/L
п = 4/1350 = 0,003 рад (0,17
o), что меньше критического угла
кр = 0,0072 рад (0,43
o), установленного фирмой-изготовителем гидравлических цилиндров.
При вращении нажимного винта скольжение происходит только между кольцами и телами качения упорного подшипника качения с минимальным равномерным износом. При этом пята относительно подпятника неподвижна и износа нет.
Контроль величины усилия прокатки на одной стороне клети P
оп осуществляется по информации датчиков давления масла 11 в поршневой p
п и штоковой p
шп полостей гидравлического цилиндра: P
оп = p
п
S
ц-p
шт
S
пл, где S
ц и S
пл - активные площадь цилиндра и плунжера. Точность измерения усилия прокатки в данном устройстве не зависит от влияния каких-либо перекосов или горизонтальных усилий, характерных для устройств с тензометрической месдозой.
Предлагаемое нажимное устройство было установлено на 11-й клети стана 2000 ОАО "НЛМК". Как показали исследования работы клети после реконструкции, перекосов элементов нажимного устройства относительно друг друга не происходит, опорные валки с подушками не смещаются ни в осевом, ни в радиальном направлениях, подшипники жидкостного трения работают устойчиво, износа элементов устройства не наблюдается, полученная информация по усилию прокатки успешно используется в системе начальной настройки чистовой группы клетей стана.
Формула изобретения
Нажимное устройство клети тонколистового стана, включающее расположенные между верхней поперечиной станины и подушкой верхнего опорного валка механическую пару гайка - винт, пяту с подпятником, датчик усилия прокатки, гидравлическую пару плунжер - цилиндр, отличающееся тем, что контактная поверхность пяты с подпятником плоская, между подпятником и плунжером устанавливается упорный подшипник качения, а в гидравлическую систему пары цилиндр - плунжер - гидравлический датчик усилия прокатки.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3,
Рисунок 4,
Рисунок 5